

Design of Phase Feed-Forward System in CTF3 and Performance of Fast Beam Phase Monitors

Piotr Skowroński, Alexandra Andersson (CERN) Andra Ghigo, Fabio Marcellini (INFN/LNF Frascati) Philip Burrows, Glenn Christian, Colin Perry (JAI/Oxford U.) Alexander Gerbershagen, Jack Roberts (JAI/Oxford U./CERN) Emmanouil Ikarios (NTU Athens/CERN)

Compact Linear Collider aka CLIC

The Two Beam Acceleration

drive beam 100 A, 239 ns 2.38 GeV -> 240 MeV

Phase Tolerance Between the two beams

CLIC luminosity quickly drops if the RF phase jitters

♦ Expected (conservative) drive beam phase stability 2.5°@12GHz
 → Must stabilize!

15 May 2013

Phase stabilization in the Drive Beam Turn Arounds

The CLIC Phase Stabilization Feed-Forward System

- It will increase the drive beam stability and correct phase variation along pulse to the required 0.2° at 12GHz
 - Measure phase offset before the turn around
 - Correct it after the turn around
- The current CLIC design based on a 4-bend chicane
 - Each bend is equipped with a fast kicker so that the time of flight though the chicane is variable, and thus the time of flight also

IPAC'13

Naturally, the bandwidth of the system is the key parameter

And the amplifier power to deliver sufficient deflection angle for the 2.4 GeV beam combined with the high bandwidth

Phase Feed-Forward @ CTF3

- A prototype system implementation in CTF3
 - Prove its feasibility
 - Test area for the R&D
 - Ultimate goal: phase stabilization to 0.2 deg @ 12 GHz
- Phase measured before the Delay Loop with a dedicated monitor
- Correction in the dog-leg chicane after Combiner Ring using 2 kickers
- Verification with 2 monitors installed just before and after the dogleg
- 280 ns latency

IPAC'13

Phase Feed-Forward @ CTF3

A more detailed technical view

An Ideal Optics

 \bullet Large R₅₂, at least 1 m Defines the phase range that can be corrected with a given kick • $R_{52}=1$ m implies 1 mm path length change for nominal 1 mrad kick $R_{12} = 0$ from kicker to kicker Orbit does not move after the correction $R_{22} = 1$ (or -1) from kicker to kicker Kicker amplitude is the same (-1 means reversed polarity) Dispersion amplitude below 2m No dispersion after the dogleg Including the bumped orbits Smooth transverse optics Max betas not too big and min ones not too small • Small R_{56} , adjustable

Chicane Layout

- A compromise was found between costly modifications and satisfactory performance
 - The correction chicane is implemented within an existing line
 - It is already densely packed \rightarrow Kicker insertion tricky
 - For the system tests the resulting beam does not have to be perfect

IPAC'13

Integration of the kickers

- A quadrupole and magnetic corrector around each kicker
 - The quadrupole is needed to preserve lattice functionality
 - The corrector:
 - will help in the commissioning
 - allows a slow feed-back to prevent phase drifts out of the kicker correction range

Optics

- ♦ R52=-1.05 → Correction range +/- 15° @12GHz
- The orbit bump perfectly closed
- Dispersion closed
- Maximum dispersion amplitude 2.2 m
- Spurious dispersion \sim 15 cm at maximum kick

Phase Monitors LNF/INFN Frascati

- ◆ 12 GHz RF pickups using a choke mode cavity
 - 30 MHz bandwidth
 - 0.2° at 12 GHz resolution

Kickers LNF/INFN Frascati

- Strip-line kickers based on the Dafne design
- ♦ 1.1 kV for 1 mrad deflection @125 MeV
 - 100 Ω differential impedance
 - At least 50 kW drive needed

Strip-line Internal Diameter=40 mm

Amplifiers

John Adams Institute / Oxford University

- It is a major challenge: Bandwidth and Power
- Nominal peak power of 65 kW
- ♦ The target bandwidth is at least 50 MHz
 - But will be less for large changes in signal amplitude due to slew rate limitation
- ◆ Full performance guaranteed over a 280-420 ns range
 - 1.2 μs pulse duration for the full uncombined CTF3 beam possible with somewhat limited performance

4 parallel 18 kW modules

- Each with its own power converter and output transformer
- The output stage of the amplifier module made of two 1200 V SiC FETs driven by low voltage Si FETs
- \bullet Droop in the output transformers limited to 10% over 1.2 μs
- Each equipped with a separate drive and control module

Feed-forward processor John Adams Institute / Oxford University

The brain of the system, will drive the kicker amplifiers

- A custom digitiser and feed-forward controller based around a Xilinx Virtex-5 FPGA.
 - 9 analogue input channels, digitisation done using 14-bit 400 MS/s ADCs
 - 4 analogue output channels, using 14-bit 210 MHz DACs
- The FPGA logic operations can be clocked in the range 200-400 MHz
 - External clock synchronized with CTF3 RF
- The feed-forward algorithm will allow for operation on both un-combined and combined beam.
 - For combined beam, measurements from corresponding sections of the different sub-pulses will be averaged together
 - This mimics the interleaving in the Delay Loop and Combiner Ring

The 3 monitors installed in a string for their validation

Read-out electronics

- 2 horizontal or vertical ports are connected to a hybrid
 To remove TE11 dipole mode
- ◆ The sum signal is mixed with a 12 GHz reference producing signal proportional to A sin(\$)
 ■ The mixer output is amplitude dependent
- The sum amplitude is also measured with a diode
 To resolve "A" for a given beam
- The difference signal is also measured with a diode
 It is proportional to the beam position offset
- Calibration using a synthetized signal with frequency close to the 12 GHz and with different amplitudes
 - In this way crosstalk and the all the calibration constants can be measured for the interesting range of amplitudes.

Resolution

Electronics resolution at the moment is about 0.2 degree
 Will be soon improved with better signal and ADC level matching
 The monitors agree between each other and a 3 GHz button pickup

IPAC'13

Resolution

However, monitor 2 performs not as good as 1 and 3

- It was reported to have problems with the feed-through installation
- It is discarded for the moment and will be repaired during shutdown

Resolution

- The monitors 1 and 3 agree within 0.3 degrees
- Standard deviation of the residuals is 0.33 degrees
- The resulting resolution is 0.23 degrees
 - → resolution is dominated by the electronic noise of 0.2 degrees

IPAC'13

Linearity

- The CTF3 beam has inherent phase sag due to the RF pulse compression system
- We observed how the measured phase sag changes for different phases of the local oscillator
- To quantify the preservation of the shape difference at 2 locations ϕ_{c} and ϕ_{s} within traces is plotted

Bandwidth checks

- ◆ The monitors were designed for 30 MHz bandwidth
- The final bandwidth measurement will be done only when the monitors are installed at their positions downstream of the Delay Loop
 - The Delay Loop allows us creating a train with a sharp phase jump

Bandwidth checks

- A steep phase step was introduced
 - The RF pulse compression for the last station was programmed to deliver an amplitude step as sharp as possible
 - And hence the beam energy change
 - The Stretching chicane adjusted to R56=0.45 converted the energy change to the phase change
 - The steepness was verified using
 - A BPM (BPI) at a large dispersion location
 - A BPR a 3GHz button phase pickup
- ♦ The bandwidth is at least 3.7 MHz

Bandwidth checks The phase switches

Measurement of phase switches in the sub-harmonic bunchers
 180° phase switches needed for recombination with the Delay Loop

- Imperfect switches create discontinuity in bunch phase
- The monitors measure a 30 ns effect that implies **10MHz** BW
 - There is no independent way in CTF3 to cross-check the phase change

Beam position dependence

- A beam position offset induces dipole mode TE₁₁
 -25dB lower than the monopole mode
- If the hybrid is perfect, it shouldn't be present in the sum
 - Hybrids are never perfect
- Direct position scans show no statistically relevant effect
 - The beam was moved ±4 mm using 2 magnetic correctors installed just upstream of the monitors and a ballistic beam behind them was measured with 2 BPMs
- By measuring how the difference channel power changes with the beam position, we calculated the hybrid rejection level to -25dB
 - By symmetry, this must the same in the sum (phase) signal
 - We calculated the position-to-phase crosstalk to 0.16°/mm

Conclusion

- A prototype Phase Feed Forward system is in preparation in CTF3
- It will serve as an R&D and test area for the technology development
- The fast phase monitors are operational and perform accordingly to their specification
- The full system will be operational at the end of summer 2013

Backup slides

The power of the amplifier to deliver sufficient deflection angle for the 2.4 GeV beam combined with the high bandwidth

Linearity

- The CTF3 beam has inherent phase sag due to the RF pulse compression system
- We observed how the measured phase sag changes for different phases of the local oscillator

IPAC'13

Linearity

- To quantify the preservation of the shape
 - 2 values at different locations within traces are taken, ϕ_{C} and ϕ_{S}
 - One trace is taken as a reference, corresponding phases ϕ_{C0} and ϕ_{S0}
 - For each trace, the difference to the corresponding point in the reference is calculated for

Integration of the kickers

- A quadrupole and magnetic corrector around each kicker
 - Quadrupole is needed to preserve the lattice functionality
 - Corrector will help in the commissioning and allow implementation of a slow feed-back

Jean-Marc Scigliuto

NicolasChritin

Esa Payu

