Author: Pasquinelli, R.J.
Paper Title Page
WEPFI066 The RF System for the MICE Experiment 2848
 
  • K. Ronald, A.J. Dick, C.G. Whyte
    USTRAT/SUPA, Glasgow, United Kingdom
  • P.A. Corlett
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.J. DeMello, D. Li, S.P. Virostek
    LBNL, Berkeley, California, USA
  • A.F. Grant, A.J. Moss, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.M. Hanlet
    IIT, Chicago, Illinois, USA
  • C. Hunt, K.R. Long, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
  • A. Moretti, R.J. Pasquinelli, D.W. Peterson, R.P. Schultz, J.T. Volk
    Fermilab, Batavia, USA
  • P.J. Smith
    Sheffield University, Sheffield, United Kingdom
  • T. Stanley
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • Y. Torun
    Illinois Institute of Technology, Chicago, IL, USA
 
  The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a muon beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the LLRF control, the power amplifier chain, distribution network, cavities, tuners and couplers, all of which must operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual Muon shall also be outlined.  
 
WEPFI073 A Modular Cavity for Muon Ionization Cooling R&D 2860
 
  • D.L. Bowring, A.J. DeMello, A.R. Lambert, D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California, USA
  • C. Adolphsen, L. Ge, A.A. Haase, K.H. Lee, Z. Li, D.W. Martin
    SLAC, Menlo Park, California, USA
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
  • A. Moretti, M.A. Palmer, R.J. Pasquinelli, Y. Torun
    Fermilab, Batavia, USA
  • R.B. Palmer
    BNL, Upton, Long Island, New York, USA
 
  The Muon Accelerator Program (MAP) collaboration is developing an ionization cooling channel for muon beams. Ionization cooling channel designs call for the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, strong magnetic fields have been shown to limit the maximum achievable gradient in RF cavities. This gradient limit is characterized by RF breakdown and damage to the cavity surface. To study this issue, we have developed an experimental program based on a modular pillbox cavity operating at 805 MHz. The modular cavity design allows for the evaluation of different cavity materials - such as beryllium - which may ameliorate or circumvent RF breakdown triggers. Modular cavity components may furthermore be prepared with different surface treatments, such as high-temperature baking or chemical polishing. This poster presents the design and experimental status of the modular cavity, as well as future plans for the experimental program.