Author: Ovaska, S.J.
Paper Title Page
MOPWA033 Modelling of Parasitic Inductances of a High Precision Inductive Adder for CLIC 738
  • J. Holma, M.J. Barnes
    CERN, Geneva, Switzerland
  • S.J. Ovaska
    Aalto University, School of Science and Technology, Aalto, Finland
  The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flat-top of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. However, the output impedance of the inductive adder needs to be well matched to the system impedance. The primary leakage inductance, which cannot be computed accurately analytically, has a significant effect upon the output impedance of the inductive adder. This paper presents predictions, obtained by modelling the 3D geometry of the adder structure and printed circuit boards using the FastHenry code, for primary leakage inductance.