Author: Mosnier, A.
Paper Title Page
TUOAB101 Installation and Commissioning of the 1.1 MW Deuteron Prototype Linac for IFMIF 1090
  • J. Knaster
    IFMIF/EVEDA, Rokkasho, Japan
  • P. Cara, A. Mosnier
    Fusion for Energy, Garching, Germany
  • S. Chel
    CEA/DSM/IRFU, France
  • J. Molla
    CIEMAT, Madrid, Spain
  • H. Suzuki
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
  IFMIF, the International Fusion Materials Irradiation Facility, will learn the degradation of the mechanical properties of purpose designed reduced activation ferritic-martensitic steels under bombardment of 14 MeV neutrons at 1018 n/m2s flux reaching values of 150 displacements per atom in the steel lattice. The understanding of the impact of Deuterium-Tritium fusion neutrons in next decade is essential to design and construct a fusion power plant; the next step after ITER. The 14 MeV neutrons are stripped from a liquid Li screen flowing at 15 m/s impacted by 2 parallel 125 mA deuteron beam at 40 MeV. IFMIF project, in its engineering validation phase, will operate in Rokkasho a 125 mA deuteron LINAC at 9 MeV that will validate the concept of IFMIF accelerator, LIPAc. The ion source will inject 140 mA deuterons at 100 KeV in a normal-conducting RFQ that will deliver the bunched beam at 5MeV to be accelerated up to 9 MeV thanks to 8 half-wave superconducting resonators. The installation and commissioning of LIPAc in Rokkasho (Japan) is sequential and the first stage is starting now; the strategy to overcome potential difficulties is detailed.  
slides icon Slides TUOAB101 [2.396 MB]  
THPWO006 Beam Commissioning of the Linear IFMIF Prototype Accelerator Injector: Measurements and Simulations 3767
  • N. Chauvin, S. Chel, O. Delferrière, R. Gobin, P.A.P. Nghiem, F. Senée, M. Valette
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Mosnier
    Fusion for Energy, Garching, Germany
  • Y. Okumura
    JAEA, Rokkasho, Japan
  • H. Shidara
    IFMIF/EVEDA, Rokkasho, Japan
  • D. Uriot
    CEA/DSM/IRFU, France
  The EVEDA (Engineering Validation and Engineering Design Activities) phase of the IFMIF (International Fusion Materials Irradiation Facility) project consists in building, testing and operating, in Japan, a 125 mA/9 MeV deuteron accelerator, called LIPAc, which has been developed in Europe. The 140 mA cw D+ beam that has to be delivered by the LIPAc injector is produced by a 2.45 GHz ECR ion source based on the SILHI design. The low energy beam transfer line (LEBT) relies on a dual solenoid focusing system to transport the beam and to match it into the RFQ*. The beam line is equipped by several diagnostics: intensity measurement, emittance measurement unit, profilers and beam proportion analysis. During the LIPAc injector beam commissioning performed in CEA-Saclay, the deuteron beam intensity transported at the end of the LEBT reached an unprecedented value of 140 mA at 100 keV. In this paper, the results obtained during the commissioning are presented. In particular, beam emittance measurements as a function of duty cycle, extracted current from the ion source and solenoid tunings are exposed. The experimental results are discussed and compared to beam dynamics simulations.
* R. Gobin et al., this conference