Author: Morozov, V.S.
Paper Title Page
MOPWO077 Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab 1058
 
  • E.W. Nissen, F. Lin, V.S. Morozov, Y. Zhang
    JLAB, Newport News, Virginia, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.
 
 
MOPWO080 GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders 1064
 
  • Y. Roblin, V.S. Morozov, B. Terzić
    JLAB, Newport News, Virginia, USA
  • M. Aturban, D. Ranjan, M. Zubair
    ODU CS, Norfolk, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.
 
 
MOPWO083 LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab 1070
 
  • Y. Zhang, Y.S. Derbenev, A. Hutton, G.A. Krafft, R. Li, F. Lin, V.S. Morozov, E.W. Nissen, R.A. Rimmer, H. Wang, S. Wang, B.C. Yunn, H. Zhang
    JLAB, Newport News, Virginia, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 1033 cm-2s−1. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.
 
 
TUPFI060 Complete Muon Cooling Channel Design and Simulations 1484
 
  • C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson
    Muons. Inc., USA
  • Y.S. Derbenev, V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • D.V. Neuffer, K. Yonehara
    Fermilab, Batavia, USA
 
  Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittance required for an Energy-Frontier Muon Collider, but lacks an end-to-end design. Meanwhile, the recent discovery of a Higgs-like boson has created interest in the High Energy physics community for a Higgs Factory to investigate its properties and verify whether it is Standard Model or beyond. We present principles and tools to match emittances between and within muon beam cooling subsystems that may have different characteristics. The Helical Cooling Channel (HCC), which combines helical dipoles and a solenoid field, allows a general analytic approach to guide designs of transitions from one set of cooling channel parameters to another. These principles and tools will be applied to design a complete cooling channel that would be applicable to a Higgs Factory and an Energy Frontier Muon Collider.  
 
WEOAB202 JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs 2085
 
  • S.A. Bogacz, G.A. Krafft, V.S. Morozov, Y. Roblin
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
We propose a demonstration experiment for a new concept of a ‘dogbone’ RLA with multi-pass return arcs – JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.
 
slides icon Slides WEOAB202 [1.485 MB]