Author: Moretti, A.
Paper Title Page
TUPFI059 Summary of Dense Hydrogen Gas Filled RF Cavity Tests for Muon Acceleration 1481
 
  • K. Yonehara, M. Chung, M.R. Jana, M.A. Leonova, A. Moretti, A.V. Tollestrup
    Fermilab, Batavia, USA
  • B.T. Freemire, P.M. Hanlet, Y. Torun
    IIT, Chicago, Illinois, USA
  • R.P. Johnson
    Muons. Inc., USA
 
  Dense hydrogen gas filled RF cavity has a great potential to accelerate a large phase space muon beam in a strong magnetic field. The concept of novel RF cavity has been demonstrated by using an intense proton beam at Fermilab. The experimental result was agreed extremely well with the conventional dilute plasma physic. Based on the model, the beam-induced plasma in the gas filled RF cavity could be controlled by adding a small amount of electronegative gas in dense hydrogen gas. Overview of these experiments will be shown in this presentation.  
 
TUPFI064 Beam Induced Plasma Dynamics in a High Pressure Gas-Filled RF Test Cell for use in a Muon Cooling Channel 1496
 
  • B.T. Freemire, P.M. Hanlet, Y. Torun
    IIT, Chicago, Illinois, USA
  • M. Chung, M.R. Jana, M.A. Leonova, A. Moretti, T.A. Schwarz, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, USA
  • M.G. Collura
    Politecnico di Torino, Torino, Italy
  • R.P. Johnson
    Muons. Inc., USA
 
  Filling an RF cavity with a high pressure gas prevents breakdown when the cavity is place in a multi-Tesla external magnetic field. The choice of hydrogen gas provides the additional benefit of cooling a beam of muons. A beam of particles traversing the cavity, be it muons or protons, ionizes the gas, creating an electron-ion plasma which absorbs energy from the cavity. The ionization rate can be calculated from a beam intensity measurement. Energy loss measurements indicate the loading per RF cycle per electron-ion pair range from 10-18 to 10-16 Joules in pure hydrogen, and 10-20 to 10-18 Joules when hydrogen is doped with dry air. The addition of an electronegative gas (oxygen) has been observed to reduce the lifetime of ionization electrons in the cavity to below 1 nanosecond. Additionally, the recombination rate of electrons and hydrogen ions has been measured to be on the order of 10-6 cubic centimeters per second. The recombination mechanism and hydrogen ion species, along with the three-body attachment process of electrons to oxygen, will be discussed.  
 
TUPFI068 High Power Tests of Alumina in High Pressure RF Cavities for Muon Ionization Cooling Channel 1508
 
  • L.M. Nash
    University of Chicago, Chicago, Illinois, USA
  • G. Flanagan, R.P. Johnson, F. Marhauser, J.H. Nipper
    Muons. Inc., USA
  • M.A. Leonova, A. Moretti, M. Popovic, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, USA
  • Y. Torun
    IIT, Chicago, Illinois, USA
 
  It is important to make a compact muon ionization cooling channel to increase the cooling efficiency (muon survival rate, cooling decrement, etc). A proposed scheme to reduce the radial size of RF cavities at a given resonance frequency is to insert a dielectric material into the RF cavity. In vacuum cavities, however, dielectric materials are extremely susceptible to breakdown in high power conditions. High-pressure hydrogen gas has been shown to inhibit breakdown events in RF cavities in strong magnetic fields. An experiment has been designed to test surface breakdown of alumina in RF cavities. A structure has been designed to maximize the parallel field parallel to the surface while bringing the cavity into a desired frequency range (800-810MHz). Alumina is tested in this configuration under high power conditions. The experimental result will be shown in this presentation.  
 
WEPFI066 The RF System for the MICE Experiment 2848
 
  • K. Ronald, A.J. Dick, C.G. Whyte
    USTRAT/SUPA, Glasgow, United Kingdom
  • P.A. Corlett
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.J. DeMello, D. Li, S.P. Virostek
    LBNL, Berkeley, California, USA
  • A.F. Grant, A.J. Moss, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.M. Hanlet
    IIT, Chicago, Illinois, USA
  • C. Hunt, K.R. Long, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
  • A. Moretti, R.J. Pasquinelli, D.W. Peterson, R.P. Schultz, J.T. Volk
    Fermilab, Batavia, USA
  • P.J. Smith
    Sheffield University, Sheffield, United Kingdom
  • T. Stanley
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • Y. Torun
    Illinois Institute of Technology, Chicago, IL, USA
 
  The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a muon beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the LLRF control, the power amplifier chain, distribution network, cavities, tuners and couplers, all of which must operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual Muon shall also be outlined.  
 
WEPFI072 Analysis of Breakdown Damage in an 805 MHz Pillbox Cavity for Muon Ionization Cooling R&D 2857
 
  • D.L. Bowring, D. Li
    LBNL, Berkeley, California, USA
  • A. Moretti, Y. Torun
    Fermilab, Batavia, USA
 
  When operating in multi-Tesla solenoidal magnetic fields, normal-conducting cavities exhibit RF breakdown at anomalously low gradients. This breakdown behavior may be due to field-emitted electrons, focused by the magnetic field into "beamlets" with relatively large current densities. These beamlets may then cause pulsed heating and cyclic fatigue damage on cavity interior surfaces. If this model is correct, materials with long radiation lengths (relative to copper) may alleviate the problem of RF breakdown in strong magnetic fields. To study this phenomenon, RF breakdown was induced on pairs of "buttons" in an 805 MHz pillbox cavity. The shape of the buttons creates a local enhancement of the surface electric field, such that breakdown occurs preferentially on the button surface. Beryllium and copper buttons were tested in order to evaluate the effect of radiation length on RF breakdown performance. This poster presents an analysis of the damage to these buttons and suggests a path forward for future materials R&D related to breakdown in strong magnetic fields.  
 
WEPFI073 A Modular Cavity for Muon Ionization Cooling R&D 2860
 
  • D.L. Bowring, A.J. DeMello, A.R. Lambert, D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California, USA
  • C. Adolphsen, L. Ge, A.A. Haase, K.H. Lee, Z. Li, D.W. Martin
    SLAC, Menlo Park, California, USA
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
  • A. Moretti, M.A. Palmer, R.J. Pasquinelli, Y. Torun
    Fermilab, Batavia, USA
  • R.B. Palmer
    BNL, Upton, Long Island, New York, USA
 
  The Muon Accelerator Program (MAP) collaboration is developing an ionization cooling channel for muon beams. Ionization cooling channel designs call for the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, strong magnetic fields have been shown to limit the maximum achievable gradient in RF cavities. This gradient limit is characterized by RF breakdown and damage to the cavity surface. To study this issue, we have developed an experimental program based on a modular pillbox cavity operating at 805 MHz. The modular cavity design allows for the evaluation of different cavity materials - such as beryllium - which may ameliorate or circumvent RF breakdown triggers. Modular cavity components may furthermore be prepared with different surface treatments, such as high-temperature baking or chemical polishing. This poster presents the design and experimental status of the modular cavity, as well as future plans for the experimental program.