Author: Mi, Z.H.
Paper Title Page
WEPWO018 Status of the IHEP 1.3 GHz Superconducting RF Program for the ILC 2355
  • J. Gao, Y.L. Chi, J.P. Dai, R. Ge, T.M. Huang, S. Jin, C. H. Li, S.P. Li, Z.Q. Li, H.Y. Lin, Y. Liu, Z.C. Liu, Q. Ma, Z.H. Mi, W.M. Pan, Y. Sun, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC. IHEP is building an SRF Accelerating Unit, named the IHEP ILC Test Cryomodule (IHEP ILC-TC1), for the ILC SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the components test results and the assembly preparation of this cryomodule. Processing and vertical test of the large grain low-loss shape 9-cell cavity is done. Performance of the in-house made high power input coupler and tuner at room temperature reaches the ILC specification.  
WEPWO026 HOM Parameters Simulation and Measurement Result of the IHEP02 Low-loss Cavity 2372
  • H.J. Zheng, J. Gao, S. Jin, Y. Liu, Z.C. Liu, Z.H. Mi, J.Y. Zhai, T.X. Zhao
    IHEP, Beijing, People's Republic of China
  • H. Yuan
    BIAM, Beijing, People's Republic of China
  In cavities , there exists not only the fundamental mode which is used to accelerate the beam but also higher order modes(HOMs). The higher order modes excited by beam can seriously affect beam quality, especially for the higher R/Q mode. This paper reports on recent measurements of higher order modes in the IHEP-2 low-loss SRF cavity. Using different methods, the Qext of the dangerous modes passband are got. This result is compared with TESLA result. R/Q of the first three passbands are also got by CST and compared with the results of TESLA cavity and STFBaseline cavity.