Author: McCormick, D.J.
Paper Title Page
MOPWA058 Cavity Beam Position Monitor at Interaction Point Region of Accelerator Test Facility 2 807
  • Y.I. Kim, D.R. Bett, N. Blaskovic Kraljevic, P. Burrows, G.B. Christian, M.R. Davis, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • J.C. Frisch, D.J. McCormick, J. Nelson, G.R. White
    SLAC, Menlo Park, California, USA
  • Y. Honda, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  Nanometre resolution cavity beam position monitors (BPMs) have been developed to measure the beam position and linked to a feedback system control the beam position stability within few nanometres in the vertical direction at the focus, or interaction point (IP), of Accelerator Test Facility 2 (ATF2). In addition, for feedback applications a lower-Q and hence faster decay time system is desirable. Two IPBPMs have been installed inside of IP chamber at the ATF2 focus area. To measure the resolution of IPBPMs two additional C-band cavity BPMs have been installed one upstream and one downstream of the IP. One cavity BPM has been installed at an upstream image point of IP. The performance of the BPMs is discussed and the correlation between IP and image point positions is presented along with a discussion of using these BPMs for position stabilisation at the IP.  
MOPWO023 Upgrade and Systematic Measurement Campaign of the ATF2 Multi-OTR System 933
  • A. Faus-Golfe, J. Alabau-Gonzalvo, C. Blanch Gutierrez, J. Resta-López
    IFIC, Valencia, Spain
  • J. Cruz, E. Marín, D.J. McCormick, G.R. White, M. Woodley
    SLAC, Menlo Park, California, USA
  A multi-Optical Transition Radiation (mOTR) system made of four stations is being used routinely since September 2011 for transverse beam size measurement and emittance reconstruction in the extraction line of ATF2, providing diagnostic support during the ATF2 tuning operation. Furthermore it is also an excellent tool for fast transverse coupling correction. Due to the compactness of the current design the system has an influence in the increase of the transverse emittance due to wakefield effects when a simultaneous measurement is made. To avoid this effect a new target holder and a new optics has been designed and implemented. In this paper we describe the present status of the ATF2 mOTR system, showing recent performance results, and hardware design improvements.