Author: Lombardi, A.M.
Paper Title Page
WEPEA060 Plans for the Upgrade of CERN's Heavy Ion Complex 2645
 
  • D. Manglunki, M. E. Angoletta, H. Bartosik, A. Blas, D. Bodart, M.A. Bodendorfer, T. Bohl, J. Borburgh, E. Carlier, J.-M. Cravero, H. Damerau, L. Ducimetière, A. Findlay, R. Garoby, S.S. Gilardoni, B. Goddard, S. Hancock, E.B. Holzer, J.M. Jowett, T. Kramer, D. Kuchler, A.M. Lombardi, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille
    CERN, Geneva, Switzerland
 
  To reach a luminosity higher than 6×1027 Hz/cm2 for Pb-Pb collisions, as expected by the ALICE experiment after its upgrade during the 2nd Long LHC Shutdown (LS2), several upgrades will have to be performed in the CERN accelerator complex, from the source to the LHC itself. This paper first details the present limitations and then describes the strategy for the different machines in the ion injector chain. Both filling schemes and possible hardware upgrades are discussed.  
 
THPWO077 Status and Plans for the Upgrade of the LHC Injectors 3936
 
  • R. Garoby, H. Damerau, S.S. Gilardoni, B. Goddard, K. Hanke, A.M. Lombardi, D. Manglunki, M. Meddahi, B. Mikulec, L. Ponce, E.N. Shaposhnikova, R. Steerenberg, M. Vretenar
    CERN, Geneva, Switzerland
 
  The plans for preparing the LHC injectors to fulfill the needs of the LHC during the next decade have significantly progressed in 2012. Linac4 construction has passed major steps of pre-series fabrication. Hardware developments and beam studies have allowed refining the baseline actions to implement and the beam characteristics achievable at injection into the collider for protons as well as for Lead ions. These achievements are described in this paper, together with the updated project planning matched to the new schedule of the LHC.  
 
THPWO082 Commissioning of the Linac4 RFQ at the 3 MeV Test Stand 3951
 
  • C. Rossi, L. Arnaudon, G. Bellodi, J.C. Broere, O. Brunner, A.M. Lombardi, J. Marques Balula, P. Martinez Yanez, J. Noirjean, C. Pasquino, U. Raich, F. Roncarolo, M. Vretenar
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, O. Piquet
    CEA/IRFU, Gif-sur-Yvette, France
 
  Linac4, the future 160MeV H injector to the CERN Proton Synchrotron Booster, is presently under construction at CERN as a first step of the planned upgrade of the LHC injectors. The low energy section of LINAC4, consisting of an ion source, a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a chopper line is being commissioned in a dedicated test stand before installation in its final position in the tunnel. The RFQ is designed to accelerate a 45 keV, 70 mA, H beam to 3 MeV, with an efficiency of 95% while preserving the transverse emittance. The RFQ, a four-vane structure 3 m in length, has been designed in collaboration with CEA/IRFU and it has been built at the CERN workshop. The precise fabrication has allowed to achieve a field flatness of 1%. The completion of the accelerating structure in September 2012 was followed by a complete series of bead-pull measurements and by high-power conditioning to the nominal power of 0.39 MW corresponding to a voltage of 78 kV across the 3 meters. Measurements with beam are foreseen during the first half of 2013. This paper reports the results of the low-power and high power RF commissioning as well as the status of beam measurements.