Author: Liu, Y.
Paper Title Page
WEPWO018 Status of the IHEP 1.3 GHz Superconducting RF Program for the ILC 2355
 
  • J. Gao, Y.L. Chi, J.P. Dai, R. Ge, T.M. Huang, S. Jin, C. H. Li, S.P. Li, Z.Q. Li, H.Y. Lin, Y. Liu, Z.C. Liu, Q. Ma, Z.H. Mi, W.M. Pan, Y. Sun, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
 
  The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC. IHEP is building an SRF Accelerating Unit, named the IHEP ILC Test Cryomodule (IHEP ILC-TC1), for the ILC SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the components test results and the assembly preparation of this cryomodule. Processing and vertical test of the large grain low-loss shape 9-cell cavity is done. Performance of the in-house made high power input coupler and tuner at room temperature reaches the ILC specification.  
 
WEPWO019 Development of Frequency Measurement Setup for ADS 650MHz and 1.3GHz Superconducting RF Cavities at IHEP 2358
 
  • S. Jin, J. Gao, Y. Liu, Z.C. Liu, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
 
  The Accelerator Driven Sub-critical System (ADS) is under development in China, and the 650MHz β=0.82 superconducting RF cavity (SRF) has been chosen as a possible candidate to accelerate the proton bunches in the medium energy section from 360MeV to 1.5GeV [1]. In order to obtain quality management and quality assurance during fabrication, radio frequency measurements on parts and subassemblies of SRF cavities become a proper method [2]. In this paper, study on developing a new frequency measurement setup mainly for half cells, dumb-bells and end groups of ADS650MHz cavities at IHEP was reported. A digital pressure sense was assembled in the setup. Together with the simulation on the structural and frequency by ANSYS Workbench, a quantitative standard for the frequency measurement was built for the cavity fabrication. Since a 9-cell TESLA-Like cavity is also under study in the meantime, via a slight modification, the setup can be also used for it.  
 
WEPWO021 ADS 650MHz β=0.82 Supercongducting Cavity Research Status 2361
 
  • Z.C. Liu, J. Gao, S. Jin, Y. Liu, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • J.X. Wang, H. Yu, H. Yuan
    BIAM, Beijing, People's Republic of China
 
  IHEP is developing a 650MHz β=0.82 supercongducting cavity for the China ADS project. The cavity is for the energy range of from 367MeV to 1500Mev. We have chosen a five cell cavity and optimized the cavity with Epk/Eacc and Bpk/Eacc to reach high gradient. Two cavity parts were fabricated and the EB welding is in process. This paper will show the fabrication status and measurement results.  
 
WEPWO022 IHEP03 Fabrication and Testing Status 2364
 
  • Z.C. Liu, J. Gao, S. Jin, Y. Liu, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • J.X. Wang, H. Yu, H. Yuan
    BIAM, Beijing, People's Republic of China
 
  IHEP is developing RF superconducting technology with different type of superconducting cavities. Tesla-like cavity which is designed by KEK is one of them. We have fabricated all the parts of the cavity using Nb material from Ningxia and cavity welding will be started soon. This paper will show the cavity fabrication procedures and measurement results.  
 
WEPWO023 High Current Superconducting Cavity Study and Design 2366
 
  • Z.C. Liu, J. Gao, S. Jin, Y. Liu, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • F. Wang
    PKU, Beijing, People's Republic of China
 
  Funding: Project 11275226 supported by NSFC
IHEP is developing a new type of high current superconducting cavity called slotted cavity proposed in 2010. The cavity is suitable for accelerating high beam current in Energy Recovery Linac (ERL). The cavity can extremely dump high order modes (HOMs) in the cavity to keep a high beam current threshold in the linac. We have studied and designed a three cell cavity and the fabrication is under going.
 
 
WEPWO026 HOM Parameters Simulation and Measurement Result of the IHEP02 Low-loss Cavity 2372
 
  • H.J. Zheng, J. Gao, S. Jin, Y. Liu, Z.C. Liu, Z.H. Mi, J.Y. Zhai, T.X. Zhao
    IHEP, Beijing, People's Republic of China
  • H. Yuan
    BIAM, Beijing, People's Republic of China
 
  In cavities , there exists not only the fundamental mode which is used to accelerate the beam but also higher order modes(HOMs). The higher order modes excited by beam can seriously affect beam quality, especially for the higher R/Q mode. This paper reports on recent measurements of higher order modes in the IHEP-2 low-loss SRF cavity. Using different methods, the Qext of the dangerous modes passband are got. This result is compared with TESLA result. R/Q of the first three passbands are also got by CST and compared with the results of TESLA cavity and STFBaseline cavity.  
 
THPME010 Magnetic Shielding for the 1.3 GHz Cryomodule at IHEP 3528
 
  • S. Jin, Y. Chen, J. Gao, R. Ge, Y. Liu, Z.C. Liu, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • F. Yang
    China Iron and Steel Research Institute Group, Beijing, People's Republic of China
 
  An ILC-type Superconducting RF (SRF) accelerating unit is being studied at IHEP. In order to achieve the design performance including both accelerating gradient and quality factor, the SRF cavity must be cooled with ambient magnetic field well shielded to the level of several mG[1,2]. In this paper, permeability of several kinds of materials for magnetic shielding made in China is systematically studied in cooperation with China Iron & Steel Research Institute Group (CISRI) and reported for the first time. By using proper material, numerical calculation for the magnetic shielding design was done via the program of Opera-3D, and then magnetic shield was fabricated by CISRI. This paper will show those studies above and the final magnetic shielding effect at room temperature. Comparisons between simulation result and real effect will also be discussed in the paper, as well as the preliminary analysis for the magnetic field leaking of this design.