Author: Liu, W.
Paper Title Page
MOPFI076 Electron Emission Studies in the New High-charge Cs2Te Photoinjector at Argonne National Laboratory 455
 
  • E.E. Wisniewski, M.E. Conde, W. Gai, C.-J. Jing, W. Liu, J.G. Power
    ANL, Argonne, USA
  • L.K. Spentzouris, Z.M. Yusof
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: This work was funded by the U.S. Dept. of Energy Office of Science under contract number DE-AC02-06CH11357.
A new L-band 1.3 GHz 1.5 cell gun for the new 75 MeV drive beam is being commissioned and will soon be operating at the Argonne Wakefield Accelerator (AWA) facility as part of the facility upgrade (see M. E. Conde, this proceedings.) The photoinjector is high-field (peak accelerating field > 80MV/m) and has a large \mathrm{Cs}2\mathrm{Te} photocathode (diameter > 30 mm) fabricated in-house. The photoinjector generates high-charge, short pulse, single bunches (Q > 100 nC) or bunch-trains (Q ≈ 1000 nC) for wakefield experiments. Field emission from the \mathrm{Cs}2\mathrm{Te} cathode is to be measured during RF conditioning and benchmarked against measurements from a copper cathode. Quantum efficiency (QE) will be measured in single and multi-bunch modes. Preliminary results are presented.
 
 
TUOCB101 Argonne Wakefield Accelerator (AWA): A Facility for the Development of High Gradient Accelerating Structures and Wakefield Measurements 1111
 
  • M.E. Conde, S.P. Antipov, D.S. Doran, W. Gai, C.-J. Jing, R. Konecny, W. Liu, J.G. Power, E.E. Wisniewski, Z.M. Yusof
    ANL, Argonne, USA
  • S.P. Antipov, C.-J. Jing, R. Konecny
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • E.E. Wisniewski, Z.M. Yusof
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357.
The recently upgraded AWA facility is being commissioned. Operation of the new L-Band RF gun with a Cesium Telluride photocathode will generate long electron bunch trains, with high charge per bunch (up to 100 nC). The six new linac tanks will boost the beam energy to 75 MeV, making it an extremely well suited drive beam to excite wakefields in structures. One of the main goals of the facility is to generate RF pulses with GW power levels, corresponding to accelerating gradients of hundreds of MV/m and energy gains on the order of 100 MeV per structure. A key aspect of the studies and experiments carried out at the AWA facility is the use of relatively short RF pulses (15 – 25 ns), which is believed to mitigate the risk of breakdown and structure damage.
 
slides icon Slides TUOCB101 [3.416 MB]