Author: Lamont, M.
Paper Title Page
MOYAB101 The First Years of LHC Operation for Luminosity Production 6
 
  • M. Lamont
    CERN, Geneva, Switzerland
 
  A summary of the first 3 years of LHC operation is presented with a discussion on the performance ramp-up, operation efficiencies and system reliability. The main contributory factors to peak and integrated luminosity performance are outlined.  
slides icon Slides MOYAB101 [12.139 MB]  
 
MOODB201 Proton-nucleus Collisions in the LHC 49
 
  • J.M. Jowett, R. Alemany-Fernandez, P. Baudrenghien, D. Jacquet, M. Lamont, D. Manglunki, S. Redaelli, M. Sapinski, M. Schaumann, M. Solfaroli Camillocci, R. Tomás, J.A. Uythoven, D. Valuch, R. Versteegen, J. Wenninger
    CERN, Geneva, Switzerland
 
  Following the high integrated luminosity accumulated in the first two Pb-Pb collision runs in 2010 and 2011, the LHC heavy-ion physics community requested a first run with p-Pb collisions. This almost unprecedented mode of collider operation was not foreseen in the baseline design of the LHC whose two-in-one magnet design imposed equal rigidity and, hence, unequal revolution frequencies, during injection and ramp. Nevertheless, after a successful pilot physics fill in 2012, the LHC provided 31 nb-1 of p-Pb luminosity per experiment, at an energy of 5.02 TeV per colliding nucleon pair, with several variations of the operating conditions, in early 2013. Together with a companion p-p run at 2.76 TeV, this was the last physics before the present long shutdown. We summarise the beam physics, operational adaptations and strategy that resulted in extremely rapid commissioning. Finally, we give an account of the progress of the run and provide an analysis of the performance.  
slides icon Slides MOODB201 [6.547 MB]  
 
TUPFI026 Investigations of the LHC Emittance Blow-Up during the 2012 Proton Run 1394
 
  • M. Kuhn
    Uni HH, Hamburg, Germany
  • G. Arduini, P. Baudrenghien, J. Emery, A. Guerrero, W. Höfle, V. Kain, M. Lamont, T. Mastoridis, F. Roncarolo, M. Sapinski, M. Schaumann, R.J. Steinhagen, G. Trad, D. Valuch
    CERN, Geneva, Switzerland
 
  About 30 % of the potential luminosity performance is lost through the different phases of the LHC cycle, mainly due to transverse emittance blow-up. Measuring the emittance growth is a difficult task with high intensity beams and changing energies. Improvements of the LHC transverse profile instrumentation helped to study various effects. A breakdown of the growth through the different phases of the LHC cycle is given as well as a comparison with the data from the LHC experiments for transverse beam size. In 2012 a number of possible sources and remedies have been studied. Among these are intra beam scattering, 50 Hz noise and the effect of the transverse damper gain. The results of the investigations are summarized in this paper. Requirements for transverse profile instrumentation for post LHC long shutdown operation to finally tackle the emittance growth are given as well.  
 
TUPFI033 Colliding During the Squeeze and β* Leveling in the LHC 1415
 
  • X. Buffat
    EPFL, Lausanne, Switzerland
  • W. Herr, M. Lamont, T. Pieloni, S. Redaelli, J. Wenninger
    CERN, Geneva, Switzerland
 
  While more challenging operationally, bringing the beams into collisions during the β squeeze rather than after presents some advantages. The large tune spread arising from the non-linearity of head-on beam-beam interactions can damp impedance-driven instabilities much more efficiently than external non-linearity such as octupoles presently used in operation. Moreover, colliding during the squeeze allows to level the luminosity, optimizing the pile-up in the experiments without changing the longitudinal distribution of collisions. Operational issues are discussed and experimental results from the LHC are presented.  
 
TUPFI034 Observations of Two-beam Instabilities during the 2012 LHC Physics Run 1418
 
  • T. Pieloni
    EPFL, Lausanne, Switzerland
  • G. Arduini, X. Buffat, R. Giachino, W. Herr, M. Lamont, N. Mounet, E. Métral, G. Papotti, B. Salvant, J. Wenninger
    CERN, Geneva, Switzerland
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  During the 2012 run coherent beam instabilities have been observed in the LHC at 4 TeV, during the betatron squeeze and in collision for special filling patterns. Several studies to characterize these instabilities have been carried out during operation and in special dedicated experiments. In this paper we summarize the observations collected for different machine parameters and the present understanding of the origin of these instabilities.  
 
TUPFI038 Operation of the Betatron Squeeze at the LHC 1430
 
  • S. Redaelli, X. Buffat, M. Lamont, G.J. Müller, M. Solfaroli Camillocci, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
  • G.J. Müller
    TU Dresden, Dresden, Germany
 
  The betatron squeeze is one of the most delicate operational phases at the large Hadron collider as it entails changes of optics performed at top energy, with full intensities. Appropriate software was developed to handle the squeeze, which ensured an efficient commissioning down to a β* of 60 cm and a smooth operation. Several optics configurations could be commissioned and put in operation for physics. The operational experience of the LHC runs from 2010 until 2012 is presented and the overall performance reviewed.