Author: Kononenko, O.
Paper Title Page
TUPME032 Update on Beam Induced RF Heating in the LHC 1646
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, W. Bartmann, P. Baudrenghien, O.E. Berrig, A. Bertarelli, C. Bracco, E. Bravin, G. Bregliozzi, R. Bruce, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, M. Deile, J.F. Esteban Müller, P. Fassnacht, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, S. Jakobsen, O.R. Jones, O. Kononenko, G. Lanza, L. Lari, T. Mastoridis, V. Mertens, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, R. Schmidt, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
  Since June 2011, the rapid increase of the luminosity performance of the LHC has come at the expense of increased temperature and pressure readings on specific near-beam LHC equipment. In some cases, this beam induced heating has caused delays whilie equipment cools down, beam dumps and even degradation of these devices. This contribution gathers the observations of beam induced heating attributable to beam coupling impedance, their current level of understanding and possible actions that are planned to be implemented during the long shutdown in 2013-2014.  
TUPME054 Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-gradient Accelerating Structures 1691
  • F. Tecker, R. Corsini, M. Dayyani Kelisani, S. Döbert, A. Grudiev, O. Kononenko, S. Lebet, J.L. Navarro Quirante, G. Riddone, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  RF breakdown is a key issue for the multi-TeV high-luminosity e+e Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.  
TUPWA042 Lessons Learned and Mitigation Measures for the CERN LHC Equipment with RF Fingers 1802
  • E. Métral, O. Aberle, R.W. Aßmann, V. Baglin, M.J. Barnes, O.E. Berrig, A. Bertarelli, G. Bregliozzi, S. Calatroni, F. Carra, F. Caspers, H.A. Day, M. Ferro-Luzzi, M.A. Gallilee, C. Garion, M. Garlaschè, A. Grudiev, J.M. Jimenez, O.R. Jones, O. Kononenko, R. Losito, J.L. Nougaret, V. Parma, S. Redaelli, B. Salvant, P.M. Strubin, R. Veness, C. Vollinger, W.J.M. Weterings
    CERN, Geneva, Switzerland
  Beam-induced RF heating has been observed in several LHC components when the bunch/beam intensity was increased and/or the bunch length reduced. In particular eight bellows, out of the ten double-bellows modules present in the machine in 2011, were found with the spring, which should keep the RF fingers in good electrical contact with the central insert, broken. Following these observations, the designs of all the components of the LHC equipped with RF fingers have been reviewed. The lessons learnt and mitigation measures are presented in this paper.  
TUPWA043 Impedance Studies for VMTSA Module of LHC Equipped with RF Fingers 1805
  • O. Kononenko, F. Caspers, A. Grudiev, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
  During 2011 run of LHC it was found that beam-induced heating causes many issues for accelerator components. Particularly some of the double-bellow modules, called VMTSA modules, were found to have deformed RF fingers and a broken spring which ensured good contact between them and a central insert. Impedance studies have been performed for different types of nonconformities and benchmarked against measurements. It was found that even a small gap between the fingers and a central insert could be fatal for the VMTSA operation. Results of this study were an input for the further thermal analysis.