Author: Kephart, R.D.
Paper Title Page
TUOAB102 Project X Injector Experiment: Goals, Plan and Status 1093
 
  • A.V. Shemyakin, S.D. Holmes, D.E. Johnson, M. Kaducak, R.D. Kephart, V.A. Lebedev, C.S. Mishra, S. Nagaitsev, N. Solyak, R.P. Stanek, V.P. Yakovlev
    Fermilab, Batavia, USA
  • D. Li
    LBNL, Berkeley, California, USA
  • P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. DOE under Contract No.DE-AC02-07CH11359
A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of the Project X. This program is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. Integrated systems testing, known as the Project X Injector Experiment (PXIE), will be accomplished with a new test facility under construction at Fermilab and will be completed over the period FY12- 17. PXIE will include an H ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.
 
slides icon Slides TUOAB102 [1.615 MB]  
 
WEPWA068 Design Concepts for the NGLS Linac 2271
 
  • A. Ratti, J.M. Byrd, J.N. Corlett, L.R. Doolittle, P. Emma, J. Qiang, M. Venturini, R.P. Wells
    LBNL, Berkeley, California, USA
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
  • D. Arenius, S.V. Benson, D. Douglas, A. Hutton, G. Neil, W. Oren, G.P. Williams
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  The Next Generation Light Source (NGLS) is a design concept for a multibeamline soft x-ray FEL array powered by a ~2.4 GeV CW superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. This paper describes the concepts under development for a linac operating at 1.3 GHZ and based on minimal modifications to the design of ILC cryomodules in order to leverage the extensive R&D that resulted in the ILC design. Due to the different nature of the two applications, particular attention is given here to high loaded Q operation andμphonics control, as well as high reliability and expected up time.