Author: Jolly, S.
Paper Title Page
THPWA041 Acceptance and Transmission Simulations of the FETS RFQ 3720
 
  • S. Jolly, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  A 4m-long, 324MHz four-vane RFQ, consisting of four coupled sections, has been designed for the Front End Test Stand (FETS) at RAL in the UK. A novel design method, integrating the CAD and electromagnetic design of the RFQ with beam dynamics simulations, was used to optimise the design of the RFQ. With the design of the RFQ fixed, the focus has been on optimising the transmission of the RFQ at 3 MeV and matching the output of the FETS Low Energy Beam Transport (LEBT) to the RFQ acceptance. Extensive simulations have been carried out using General Particle Tracer (GPT) to map out the acceptance of the FETS RFQ for a 65 keV H input beam. Particular attention has focussed on optimising the simulations to match the optimised output of the FETS Penning-type H ion source. Results are presented of the transverse phase space limits on the RFQ input acceptance in both the zero current and full space charge regimes.  
 
THPWO086 Status of the RAL Front End Test Stand 3963
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.M.H. Alsari, M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • R.T.P. D'Arcy, S. Jolly
    UCL, London, United Kingdom
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) under construction at RAL is a demonstrator for the front end systems of a future high power proton linac. Possible applications include a linac upgrade for the ISIS spallation neutron source, new future neutron sources, accelerator driven sub-critical systems, a neutrino factory etc. Designed to deliver a 60mA H-minus beam at 3MeV with a 10% duty factor, FETS consists of a high brightness ion source, magnetic low energy beam transport (LEBT), 4-vane 324MHz radio frequency quadrupole, medium energy beam transport (MEBT) containing a high speed beam chopper and non-destructive photo-detachment diagnostics. This paper describes the current status of the project and future plans.