Author: Jackson, F.
Paper Title Page
MOPWA050 Bunch Train Characterisation for an Infra-red FEL Driven by an Energy Recovery Linac 786
  • T.T. Thakker, D. Angal-Kalinin, D.J. Dunning, F. Jackson, S.P. Jamison, J.K. Jones, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  The IR-FEL on the ALICE test facility in the UK first achieved lasing in October 2010 and has since been characterised in terms of its output *. In this work we make a characterisation of electron bunch properties along a complete 100us macropulse to characterise the lasing-induced energy change and its effect on energy recovery. Measurements of bunch energy and timing are correlated with the FEL radiation output and discussed.
* N. R. Thompson et al, ‘First lasing of the ALICE infra-red Free-Electron Laser’, Nuclear Instruments and Methods A, 680 (2012) 117–123
WEPWA061 ALICE ERL Intra-train Variation Investigation using Bunch-by-bunch BPMs 2256
  • D. Angal-Kalinin, F. Jackson, S.P. Jamison, J.K. Jones, A. Kalinin, T.T. Thakker, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  The ALICE ERL is an energy recovery test facility based at Daresbury Laboratory. We present investigations of charge and transverse variations/oscillations in the ALICE trains (up to 1600 bunches, spacing 55.2ns, bunch charge up to 60pC), using turn-by-turn EMMA BPMs adjusted for bunch-by-bunch measurements*. A set-up was established which allows use of pickups immediately downstream of the DC Gun as well as in the Arcs. To analyse variations, a DFT was used. It was established that a previously observed prominent (~10%) 300kHz charge envelope variation is a feature of the Photoinjector Laser. A set of transverse variations at 300kHz and below that depended on steering was also observed in the Injection Line. Downstream of the Booster, it was discovered that the transverse spectra are different. Prevailing quite regular variations (in range of 50um) were observed around 100kHz, manifesting themselves in the horizontal plane, present in non-dispersive regions, and dependent on trajectory offset in the Booster. We discuss the results, and also present our plans to apply this technique to a new single bunch injector EBTF now under commissioning in Daresbury Laboratory.
* A. Kalinin et al, MOPA30, IBIC12, Tsukuba, Japan.
WEPWA063 Longitudinal Beam Transport in the ALICE IR-FEL Facility 2262
  • F. Jackson, D. Angal-Kalinin, J.K. Jones, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  The ALICE facility at Daresbury Laboratory is an energy recovery test accelerator which includes an infra-red oscillator-type free electron laser (IR-FEL). The longitudinal transport functions (including R56 and T566) in the ALICE accelerator lattice are studied in this paper by use of precision time-of-arrival methods. The results allow characterisation of the triple bend achromat (TBA) arcs and compression chicane of the lattice. The relevance of the results to the operational performance of ALICE as a IR-FEL facility and a THz source is discussed.  
WEPWA064 Simulations of the ALICE ERL 2265
  • J.K. Jones, D.J. Dunning, F. Jackson, J.W. McKenzie, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  ALICE is a low-energy Energy Recovery Linac operated at Daresbury Laboratory in Cheshire, UK. The ALICE injector is based around a 350 kV DC photo-cathode electron gun. With an operating voltage of 325 keV, electron dynamics in the ALICE injector are space-charge dominated and highly non-linear, and this complicates simulations of the beam dynamics in this region. With an intermediate energy of 6.5 MeV, and a final ring energy of 27.5 MeV, the space-charge effects in the rest of the machine can also not be ignored. In this paper we summarise some of the work that has been performed to understand and optimise the simulations of the ALICE ERL, in several different operating modes, and using several different modelling codes.  
THPWA036 Implementation and Commissioning of the New Electron Beam Test Facility (EBTF) at Daresbury Laboratory for Industrial Accelerator System 3708
  • P.A. McIntosh, D. Angal-Kalinin, R.K. Buckley, S.R. Buckley, J.A. Clarke, B.D. Fell, A.R. Goulden, C. Hill, F. Jackson, S.P. Jamison, J.K. Jones, A. Kalinin, B.P.M. Liggins, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, T.C.Q. Noakes, Y.M. Saveliev, B.J.A. Shepherd, S.L. Smith, T.T. Thakker, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Bliss, G. Cox, G.P. Diakun, A. Gleeson, L. Ma, B.G. Martlew, A.J. Moss, K. Robertson, M.D. Roper, R.J. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  The EBTF facility will provide enabling infrastructures targeted at the development and testing of novel and compact accelerator technologies, specifically through partnership with industry and aimed at addressing applications in medicine, health, security, energy and industrial processing. The facility has now been implemented at Daresbury Laboratory and the commissioning of the critical accelerator systems has been performed. The facility is now preparing for first exploitation with partnering industries that will be able to utilise the electron beam parameters available on EBTF to either demonstrate new techniques and/or processes or otherwise develop new technologies for future commercial realisation.