Author: Hancock, S.
Paper Title Page
TUPWA044 Longitudinal Coupled-Bunch Oscillation Studies in the CERN PS 1808
 
  • H. Damerau, S. Hancock, M.M. Paoluzzi
    CERN, Geneva, Switzerland
  • M. Migliorati, L. Ventura
    Rome University La Sapienza, Roma, Italy
 
  Longitudinal coupled-bunch oscillations are an important limitation for the high-brightness beams accelerated in the CERN PS. Up to the present intensities they are suppressed by a dedicated feedback system limited to the two dominant oscillation modes. In view of the proposed installation of a wide-band feedback kicker cavity within the framework of the LHC Injectors Upgrade project (LIU), measurements have been performed with the existing damping system with the aim of dimensioning the new one. Following the excitation of well-defined oscillation modes, damping times and corresponding longitudinal kick strength are analysed. The paper summarizes the results of the observations and gives an outlook on the expected performance with the new coupled-bunch feedback.  
 
WEPEA042 The PS Upgrade Programme: Recent Advances 2594
 
  • S.S. Gilardoni, S. Bart Pedersen, C. Bertone, N. Biancacci, A. Blas, D. Bodart, J. Borburgh, P. Chiggiato, H. Damerau, S. Damjanovic, J.D. Devine, T. Dobers, M. Gourber-Pace, S. Hancock, A. Huschauer, G. Iadarola, L.A. Lopez Hernandez, A. Masi, S. Mataguez, E. Métral, M.M. Paoluzzi, S. Persichelli, S. Pittet, S. Roesler, C. Rossi, G. Rumolo, B. Salvant, R. Steerenberg, G. Sterbini, L. Ventura, J. Vollaire, R. Wasef, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
 
  The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC. In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is given.  
 
WEPEA044 RF Manipulations for Higher Brightness LHC-type Beams 2600
 
  • H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock
    CERN, Geneva, Switzerland
 
  In order to increase the transverse brightness of beams for the LHC, ever more complicated RF manipulations have been proposed in the PS machine in order to reduce the intensity demands per PS batch on the upstream PS Booster. Several schemes based on cascades of batch compression, bunch merging, as well as the more routine bunch splitting have been successfully commissioned and higher brightness beams have been delivered to the downstream accelerators for measurement. Despite all this complexity, longitudinal and transverse beam quality are well preserved. In addition, to fully profit from the brightness of all four PS Booster rings, the injection of twice 4 bunches into harmonic 9 buckets in the PS has been made operational as an alternative to the usual double-batch transfer of 4+2 bunches into harmonic 7. This paper summarizes the new beam production schemes, their implementation in the PS low-level RF system and the experimental results.  
 
WEPEA060 Plans for the Upgrade of CERN's Heavy Ion Complex 2645
 
  • D. Manglunki, M. E. Angoletta, H. Bartosik, A. Blas, D. Bodart, M.A. Bodendorfer, T. Bohl, J. Borburgh, E. Carlier, J.-M. Cravero, H. Damerau, L. Ducimetière, A. Findlay, R. Garoby, S.S. Gilardoni, B. Goddard, S. Hancock, E.B. Holzer, J.M. Jowett, T. Kramer, D. Kuchler, A.M. Lombardi, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille
    CERN, Geneva, Switzerland
 
  To reach a luminosity higher than 6×1027 Hz/cm2 for Pb-Pb collisions, as expected by the ALICE experiment after its upgrade during the 2nd Long LHC Shutdown (LS2), several upgrades will have to be performed in the CERN accelerator complex, from the source to the LHC itself. This paper first details the present limitations and then describes the strategy for the different machines in the ion injector chain. Both filling schemes and possible hardware upgrades are discussed.  
 
WEPEA061 The First LHC p-Pb run: Performance of the Heavy Ion Production Complex 2648
 
  • D. Manglunki, M. E. Angoletta, H. Bartosik, G. Bellodi, A. Blas, M.A. Bodendorfer, T. Bohl, C. Carli, E. Carlier, S. Cettour Cave, K. Cornelis, H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock, J.M. Jowett, D. Kuchler, M. O'Neil, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille, B. Vandorpe, U. Wehrle, J. Wenninger
    CERN, Geneva, Switzerland
 
  TThe first LHC proton-ion run took place in January-February 2013; it was the first extension to the collider programme, as this mode was not included in the design report. This paper presents the performance of the heavy ion and proton production complex, and details the issues encountered, in particular the creation of the same bunch pattern in both beams.  
 
WEPEA070 Space Charge Effects and Limitations in the Cern Proton Synchrotron 2669
 
  • R. Wasef, G. Arduini, H. Damerau, S.S. Gilardoni, S. Hancock, C. Hernalsteens, A. Huschauer, F. Schmidt
    CERN, Geneva, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
 
  Space charge produces a large incoherent tune-spread which, in presence of betatronic resonances, could lead to beam losses and emittance growth. In the CERN Proton Synchrotron, at the current injection kinetic energy (1.4 GeV) and even at the future kinetic energy (2 GeV), space charge is one of the main limitations for high brightness beams and especially for the future High-Luminosity LHC beams. Several detailed studies and measurements have been carried out to improve the understanding of space charge limitations to determine the maximum acceptable tune spread and identify the most important resonances causing losses and emittance growth.