Author: Goldblatt, A.
Paper Title Page
MOPME077 Electro-0ptical Bunch Profile Measurement at CTF3 658
  • R. Pan, A. Andersson, W. Farabolini, A. Goldblatt, T. Lefèvre, M. Martyanov, S. Mazzoni, S.F. Rey, L. Timeo
    CERN, Geneva, Switzerland
  • W.A. Gillespie, R. Pan, D.A. Walsh
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  A new electro-optic bunch profile monitor has recently been installed in CLIC Test Facility 3 at CERN. The monitor is based on an electro-optic spectral decoding scheme which reconstructs the longitudinal profile of the electron bunch by measuring its Coulomb field. The system uses a 780 nm fibre laser system, transported over a 20m long distance to the interaction chamber, where a ZnTe crystal is positioned close to the beam. The assembly also contains a traditional OTR screen, which is coupled to a second optical line and used to adjust the temporal overlap between the laser and the electron pulse. This paper presents the detection system in detail, as well as reporting on the first measurements performed with beam.  
TUPFI063 Electromagnetic Coupling between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System 1493
  • F. Roncarolo, W. Andreazza, A. Bertarelli, E. Bravin, F. Caspers, M. Garlaschè, A. Goldblatt, J-J. Gras, O.R. Jones, T. Lefèvre, E. Métral, A.A. Nosych, B. Salvant, G. Trad, R. Veness, C. Vollinger, M. Wendt
    CERN, Geneva, Switzerland
  The CERN LHC is equipped with two Synchrotron Radiation Monitor systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.