Author: Furuya, T.
Paper Title Page
WEPWA015 Progress in Construction of the 35 MeV Compact Energy Recovery Linac at KEK 2159
  • S. Sakanaka, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S.M. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • H. Takaki
    ISSP/SRL, Chiba, Japan
  The 35-MeV Compact Energy Recovery Linac (the Compact ERL or cERL) is under construction at the High Energy Accelerator Research Organization (KEK) in Japan. With the Compact ERL, we aim at establishing cutting-edge technologies for the GeV-class ERL-based synchrotron light source. To install the accelerator components of the cERL, we have constructed a shielding room having an area of about 60 m x 20 m. We have then installed a 500-kV DC photocathode gun, a 5-MV superconducting (SC) cryomodule for the injector, a 30-MV SC cryomodule for the main linac, and some of the other components. High-power test on the main SC cryomodule is underway in December, 2012. High-power or high-voltage tests on the injector cryomodule and on the DC gun are planned during January to March, 2013. An injector of the Compact ERL will be commissioned in April, 2013. We report the newest status of its construction.  
WEPWO016 Construction of Main Linac Cryomodule for Compact ERL Project 2349
  • K. Umemori, K. Enami, T. Furuya, H. Sakai, M. Satoh, K. Shinoe
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • M. Sawamura
    JAEA, Ibaraki-ken, Japan
  Compact ERL (cERL), which is a test facility of ERL, is under construction at KEK, in Japan. At the first stage of cERL project, electron beam will be accelerated by 30 MV at main linac region. We have developed a main linac cryomodule, which contains two L-band 9-cell superconducting cavities. Cavity assembly work was carefully done at a class-10 clean room and HOM absorbers and cold windows of input couplers were successfully mounted on the cavities. Next, the frequency tuners, thermal anchors, magnetic shields and temperature sensors and so on were assembled to the cryomodule. Then, using a clean-booth, warm windows of the input couplers are connected to the cold windows and gate valves were also attached to the both ends of the cryomodule. Finally, the cryomodule was installed into the beamline of cERL and connected to a 2K cryogenic system. Target of alignment precision of the cavities, after cooling down to 2K, are set to be within 1 mm against the beamline. The first cool-down test, followed by low power and high power measurements, is scheduled within the year 2012.  
THPWA012 The Development of a New Type of Electron Microscope using Superconducting RF Acceleration 3654
  • N. Higashi
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • A. Enomoto, Y. Funahashi, T. Furuya, Y. Kamiya, S. Michizono, M. Nishiwaki, H. Sakai, M. Sawabe, K. Ueno, M. Yamamoto
    KEK, Ibaraki, Japan
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Yamashita
    ICEPP, Tokyo, Japan
  We are developing a new type of electron microscope (EM), which adopts RF acceleration in order to exceed the energy limit of DC acceleration used in conventional EMs. It enables us to make a high-voltage EM more compact and to examine thicker specimens, and possibly to get better spatial resolution. Using a superconducting RF cavity, we can operate the EM in CW mode to obtain a beam flux comparable to that in DC mode. Low energy dispersion ΔE/E , e.g. 10-6 or better, is required for good spatial resolution in EMs, while it is usually between 10-3 to 10-4 in accelerators. We have thus designed a special type of cavity that can be excited with the fundamental and second-harmonic frequencies simultaneously; TM010 and TM020. With the two-mode cavity, the energy dispersion of the order of 10-5 would be obtained by modifying the peak of accelerating field to be flattened. As the proof-of-principle of our concept, we are developing the prototype using a 300 keV transmission electron microscope (TEM), to which a new photocathode gun and the two-mode cavity are attached. We have already manufactured the cavity and it is under test, and the gun is under construction.