Author: Fischer, W.
Paper Title Page
TUYB103 Status and Plans for the Polarized Hadron Collider at RHIC 1106
 
  • M. Bai, L. A. Ahrens, E.C. Aschenauer, G. Atoian, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, Y. Dutheil, O. Eyser, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, A.I. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, P.H. Pile, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the world’s only high energy polarized proton collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has been providing collisions of polarized proton beams at beam energy from 100~GeV to 255~GeV for the past decade to explore the proton spin structure as well as other spin dependent measurements. With the help of two Siberian Snakes per accelerator plus outstanding beam control, beam polarization is preserved up to 100~GeV. About 10% polarization loss has been observed during the acceleration between 100~GeV and 255~GeV due to several strong depolarizing resonances. Moderate polarization loss was also observed during a typical 8 hour physics store. This presentation will overview the achieved performance of RHIC, both polarization as well as luminosity. The plan for providing high energy polarized He-3 collisions at RHIC will also be covered.
This work is on behalf of RHIC team.
 
slides icon Slides TUYB103 [12.854 MB]  
 
TUPFI076 First RHIC Collider Test Operation at 2.5GeV Beam Energy 1523
 
  • C. Montag, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, S. Nemesure, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To search for the critical point in the QCD phase diagram, RHIC needs to operate at a set of low gold beam energies between 2.5 and 20 GeV per nucleon. During run 12, first successful collider operation at the lowest energy of 2.5 GeV per nucleon was achieved. We present the challenges and achieved results, and discuss possible future upgrades and improvements.
 
 
TUPFI077 Commissioning Progress of the RHIC Electron Lenses 1526
 
  • W. Fischer, Z. Altinbas, M. Anerella, M. Blaskiewicz, D. Bruno, W.C. Dawson, D.M. Gassner, X. Gu, R.C. Gupta, K. Hamdi, J. Hock, L.T. Hoff, R.L. Hulsart, A.K. Jain, P.N. Joshi, R.F. Lambiase, Y. Luo, M. Mapes, A. Marone, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J.F. Muratore, S. Nemesure, D. Phillips, A.I. Pikin, S.R. Plate, P.J. Rosas, L. Snydstrup, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, P. Wanderer, S.M. White, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
In polarized proton operation, the RHIC performance is limited by the head-on beam-beam effect. To overcome these limitations two electron lenses were installed and are under commissioning. One lens uses a newly manufactured superconducting solenoid, in the other lens the spare superconducting solenoid of the BNL Electron Beam Ion Source is installed to allow for propagation of the electron beam. (This spare magnet will be replaced by the same type of superconducting magnet that is also used in the other lens during the 2013 shut-down.) We give an overview of the commissioning configuration of both lenses, and report on first results in commissioning the hardware and electron beam. We also report on lattice modifications needed to adjust the phase advance between the beam-beam interactions and the electron lenses, as well as upgrades to the proton instrumentation for the commissioning.
 
 
TUPFI078 Measurement of the Total Cross Section of Uranium-uranium Collisions at a Center-of-mass Energy of 192.8 GeV per Nucleon-pair 1529
 
  • W. Fischer, A.J. Baltz, M. Blaskiewicz, K.A. Drees, D.M. Gassner, Y. Luo, M.G. Minty, P. Thieberger, M. Wilinski
    BNL, Upton, Long Island, New York, USA
  • I.A. Pshenichnov
    RAS/INR, Moscow, Russia
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
Heavy ion cross sections totaling several hundred barns have been calculated previously for the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). These total cross sections are more than an order of magnitude larger than the geometric ion-ion cross sections, primarily due to Bound-Free Pair Production (BFPP) and Electro-Magnetic Dissociation (EMD). Apart from a general interest in verifying the calculations experimentally, an accurate prediction of the losses created in the heavy ion collisions is of practical interest for the LHC, where some collision products are lost in cryogenically cooled magnets and have the potential to quench these magnets. In the 2012 RHIC run uranium ions collided with each other at a center-of-mass energy of 192.8 GeV per nucleon-pair with nearly all beam losses due to collisions. This allows for the measurement of the total cross section and a comparison with calculations.
 
 
TUPFI082 RHIC Performance for FY2012 Heavy Ion Run 1538
 
  • Y. Luo, J.G. Alessi, M. Bai, E.N. Beebe, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, Y. Hao, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, N.A. Kling, M. Lafky, J.S. Laster, C. Liu, D. Maffei, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, A.I. Pikin, P.H. Pile, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, J.E. Tuozzolo, B. Van Kuik, G. Wang, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the 2012 RHIC heavy ion run, we collided 96.4~GeV U-U ions and 100~GeV Cu-Au ions for the first time in RHIC. The new pre-injector with the electron-beam ion source (EBIS) was used to provide ions for RHIC ion collisions for the first time. By adding the horizontal cooling, the powerful 3-D stochastic cooling largely enhanced the luminosity. With the double bunch merging in the Booster and AGS, the bunch intensities of Cu and Au ions in RHIC surpassed their projections. Both PHENIX and STAR detectors reached their integrated luminosity goals for the U-U and Cu-Au collisions. In this article we review the machine improvement and performance in this run.
 
 
TUPFI083 Simulation Study of Head-on Beam-beam Compensation with Realistic RHIC Lattices 1541
 
  • Y. Luo, M. Bai, W. Fischer, C. Montag, V.H. Ranjbar, S. Tepikian
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We performed numerical simulations to study the effects of head-on beam-beam compensation with the realistic RHIC lattices. To better cancel the beam-beam resonance driving terms during half beam-beam compensation operation, the betatron phase advances between the interaction point IP8 and the center of the electron lens should be multiples of pi. for this purpose two shunt power supplies were added to the main quadrupole circuit buses in the arc between them. For the realistic beam-beam compensation lattices, the integer tunes are (27, 29) for the Blue ring and (29, 30) for the Yellow ring. The betatron phase advances between IP8 and the e-lens are (8pi,11pi) in the Blue ring and (11pi, 9pi) in the Yellow ring. Recent simulation results will be presented.
 
 
TUPFI084 RHIC Polarized Proton Operation for 2013 1544
 
  • V.H. Ranjbar, L. A. Ahrens, E.C. Aschenauer, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, Y. Dutheil, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, A.I. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, P.H. Pile, A. Poblaguev, V. Ptitsyn, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • O. Eyser
    UCR, Riverside, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2013 operation of the Relativistic Heavy Ion Collider (RHIC) marks the second year of running under the RHIC II era. Additionally this year saw the implementation of several important upgrades designed to push the intensity frontier. Two new E-lenses have been installed, along with a new lattice designed for the E-lens operation. A new polarized proton source which generates about factor of 2 more intensity was commissioned as well as a host of RF upgrades from a new longitudinal damper, Landau cavity in RHIC to a new low level RF and new harmonic structure for the AGS. We present an overview of the challenges and results from this years run.
 
 
WEPEA081 Local 3Qy Betatron Resonance Correction in the 2012 RHIC 250 GeV Run 2696
 
  • Y. Luo, W. Fischer, T. Roser, V. Schoefer, C.M. Zimmer
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In this article we performed numerical simulations to correct the local vertical third order betatron resonance 3Qy in the interaction regions in the Yellow ring for the 2012 RHIC 250~GeV polarized proton run. Considering the main sources of skew sextupoles are located in the interaction regions, we used local bump methods to minimize their contributions to the global 3Qy resonance driving term. Two kinds of correction orbit bumps are tested and the dynamic apertures with these correction strengths are calculated and compared.
 
 
THPFI093 Device and Technique for In-situ Coating of the RHIC Cold Bore Vacuum Tubes with Thick OFHC 3508
 
  • A. Hershcovitch, M. Blaskiewicz, J.M. Brennan, W. Fischer, C.J. Liaw, W. Meng, R.J. Todd
    BNL, Upton, Long Island, New York, USA
  • A.X. Custer, M.Y. Erickson, N.Z. Jamshidi, H.J. Poole
    PVI, Oxnard, USA
  • J.M. Jimenez, H. Neupert, M. Taborelli, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • N. Sochugov
    Institute of High Current Electronics, Tomsk, Russia
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To mitigate electron clouds & unacceptable ohmic heating problems in RHIC, we developed a robotic plasma deposition technique & device to in-situ coat the RHIC 316LN SS cold bore tubes based on mobile mole mounted magnetrons for OFHC deposition. Scrubbed Cu has low SEY and suppress electron cloud formation. Room temperature RF resistivity measurement of Cu coated SS RHIC tube samples indicate that 10 μm of Cu coating has conductivity close to copper tubing. A 50 cm long copper cathode magnetron, mounted on a carriage with spring loaded wheels, was successfully operated, traversed magnet interconnect bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. To maximize cathode lifetime, Cu cathode thickness was maximized its gap to vacuum tube minimized; movable magnet package is used. Novel cabling and vacuum-atmosphere interface system is being developed. Deposition experiments show no indentation in or damage to coating after wheels roll over coated areas; i.e. train like assembly option is a viable for in-situ RHIC coating. Details of experimental setup & coating of full-scale magnet tube sandwiched between bellows will be presented.
 
 
THPWA052 Proposal for a muSR Facility at BNL 3749
 
  • W. Fischer, J.G. Alessi, M. Blaskiewicz, K.A. Brown, C.J. Gardner, H. Huang, W.W. MacKay, P.H. Pile, D. Raparia, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
By implanting positive muons in a substance (either gas, liquid or solid), their magnetic moments can be used to sample the magnetic properties of the material. The precession rate can give the magnetic field strength, and the field direction is given away after the muons decay into positrons that are detected. The information obtained from muSR can be complementary to that from other methods such as NMR, ESR, and neutron scattering. A low energy muon surface source is particularly interesting for studying thin films. To date, only four user facilities exist in the world but none in the US. We explore the possibility of using the AGS complex at BNL for a muSR facility for the production of positive surface muons.