

Status and Plan for the Polarized Hadron Collider at RHIC

Mei Bai On behalf of RHIC Team

Collider Accelerator Department

UPAP

Brookhaven National Laboratory, Upton, NY, USA

• Challenges in performance of high energy polarized proton collision at RHIC

- Depolarizing mechanism in synchrotron
- RHIC polarized proton configuration
- RHIC: current achieved performance
 - Latest major machine improvements
- o Future plan
- o Summary

Why high energy polarized protons?

High energy proton proton collisions: gluon gluon collision and gluon quark collision

• Thomas BMT equation

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{e}{\gamma m} [G\gamma \vec{B}_y + G\gamma \vec{B}_x + (1+G)\vec{B}_s] \times \vec{S}$$

Spin tune $Q_s = G\gamma$

- Non-vertical field kicks the spin vector away from vertical,
- depolarizing resonance

Depolarizing spin resonances

Imperfection resonance

- dipole errors, steering correctors and mis-aligned quadrupoles
- o location: $G\gamma = k$
- resonance strength: ~ size of the vertical closed orbit distortion
- correction:
 - > harmonic orbit correction
 - » partial snake

Intrinsic resonance

- focusing field due to vertical betatron oscillation
 location: Gγ = kP ± Q_y
 resonance strength: ~ size of the vertical betatron oscillation
 correction:
 tune jump
 - > RF dipole
- For protons, imperfection spin resonances are spaced by 523 MeV
- Between RHIC injection and 250 GeV, a total of 432 imperfection resonances

- ☆ A magnetic device to rotate spin vector by 180°
- Invented by Derbenev and Kondratanko in 1970s
- Keep the spin tune independent of energy

Snake Depolarization Resonance

Condition $mQ_v = Q_s + k$

even order resonance

- When m is an even number
- Disappears in the two snake case like RHIC if the closed orbit is perfect

odd order resonance

- When m is an odd number
- Driven by the intrinsic spin resonances

-••••• How to avoid a snake resonance?

□ Keep spin tune as close to 0.5 as possible

- Snake current setting
- Minimize horizontal orbital angle between two snakes

$$\Delta Q_s = \frac{\left|\Delta\phi\right|}{\pi} + (1+G\gamma)\frac{\Delta\theta}{\pi}$$

Precise control of the vertical closed orbit

Precise optics control

- Proper working point at a location with no or negligible snake resonances
- Minimize the linear coupling to avoid the resonance due to horizontal betatron oscillation
- Minimize spin tune spread

Polarization Performance: 250 GeV

Polarization loss between 100 GeV and 250 GeV

- Measured with CNI polarimeter

Average Store Polarization vs. Vertical Tune

- The closer the vertical tune towards 0.7, the lower the beam polarization
- The data also shows that the direct beam-beam contribution to polarization loss during store is weak

IPAC' 13, Shanghai, China, May 12-May 17, 2013

MAJOR MACHINE DEVELOPMENT IN RUN 2013

TUPF1084, V. H. Ranjbar et al, RHIC POLARIZED PROTON OPERATION FOR 2013

Major Machine Improvements

AGS horizontal tune jump quadrupoles to overcome a total of 80 weak horizontal spin resonances during the acceleration

[1] V. Schoefer et al, INCREASINGTHEAGSBEAMPOLARIZATIONWITH80TUNEJUMPS, Proceedings of IPAC2012, New Orleans, Louisiana, USA [2] F. Lin, et al., Phys. Rev. ST 10, 044001 (2007)

M. Bai

Major Machine Improvements

-1

0

5

10

15

- Optically Pumped Polarized Ion Source upgrade
 - A high brightness external atomic H source from BINP replaced the traditional ECR source
 - Yields 3-4% higher polarization for 5x10¹¹ ions/pulse. Reaches ~80% polarization for RHIC operation

• Acceleration with 9MHZ cavity

- Provide better longitudinal match at injection to avoid the longitudinal emittance blowup
- Longer bunch length during acceleration to reduce the peak bunch intensity
 - avoid transverse beam size blowup due to E-cloud
 - Allows higher bunch intensity

20

time[nsec]

25

30

35

- Precise Beam Control

Tune/coupling feedback system: acceleration close to 2/3 orbital resonance Orbit feedback system: rms orbit distortion less than 0.1mm

The Golden Store of RUN 13

IPAC' 13, Shanghai, China, May 12-May 17, 2013

NATIONAL LABORATORY

Achieved Performance and Projection

p ¹ -p ¹ operation		2009	2012	2013	2014	
Energy	GeV	100/250	100/255	255	100/255	
No of collisions		107	107	107	107	
Bunch intensity	1011	1.3/1.1	1.3/1.8	1.85	2.0	
Beta*	m	0.7	0.85/0.65	0.65	0.65	
Peak L	10 ³⁰ cm ⁻² s ⁻¹	50/85	46/165	210	65/280	
Average L	10 ³⁰ cm ⁻² s ⁻¹	28/55	33/105	125	38/170	
Polarization P	%	56/35	59/52	56	65/57	
		Achieved Projected				

Polarized Proton Luminosity Performance

Courtesy of W. Fischer

FUTURE PLAN

Major Plans for luminosity improvement

o E-Lens: W. Fischer, Y. Luo, X. Gu and et al

• Low energy electron beam to provide a focusing lens to compensate

- Non-linear chromaticity correctionMinimize chromatic tune spread
 - Reduce chromatic beta beat
- Further beta squeeze

Accelerating Polarized Light Ions

Magnetic field strength for 180° spin rotation: $BL(\pi) = 10.48 \frac{A}{ZG}$

species	g-2/2	Resonanc e spacing [GeV/u]	Snake strength [T-m]	source	Polarization Setup		
					AGS	RHIC	
р	1.793	0.523	5.845	OPPIS	Dual partial snakes	Dual full snakes	
d	-0.14 3	6.58	147		Harmonic correction + RF dipole	Difficult to construct full snake, as well as rotator for spin manipulation	
He3	-4.19 1	0.218	3.751	ElectronBea mIonSource based*	Dual partial snakes	Dual snake +precise beam control	

* R. Milner, J. Maxwell, C. Epstein *Development of a Polar-ized* 3He *Beam Source for RHIC using EBIS,* Proceedings of 20th International Spin Physics Symposium (SPIN2012), Dubna, Russia.

Intrinsic Spin Resonance of polarized He3 in RHIC

Accelerating Polarized He3 in RHIC

• Tolerance on beam parameters:

species	y _{rms} required	y _{rms} achieved	$\Delta \mathbf{Q}_y$ required	$\Delta \mathbf{Q}_y$ achieved
proton	0.5mm	0.1mm	0.003	0.005
He-3	0.15mm	N/A	0.001	N/A

o Six-snake scenario:

The spin rotation axis of each snake alternates between 45 degrees and -45 degrees with respect to beam direction for all six snakes. The plot below is the schematic layout of six snake configuration for RHIC.

- RHIC polarized proton performance has been improved significantly during the current operation.
 - AGS horizontal tune jump quadrupoles to overcome horizontal intrinsic spin resonances
 - Accelerating polarized protons in RHIC with 9MHz cavity
 - Upgrade with OPPIS with a fast high brightness atomic H source yielded 3-4% polarization increase for same ion bunch intensity
 - Excellent precise beam control to avoid snake resonances
- Future activities
 - Electron lenses commissioning to compensate head-on beam-beam effect to reach higher luminosity
 - Better beam control at store to avoid polarization deterioration
 - Explore acceleration of polarized He3 beam in RHIC complex

An Incredible Team

L. Ahrens, E.C. Aschenauer, G. Atoian J. Beebe-Wang, M. Blaskiewicz J.M. Brennan, K. Brown, D. Bruno, R. Connolly, K.O. Eyser T. D'Ottavio, K.A. Drees, Y. Dutheil, W. Fischer C. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, H. Huang, R. Hulsart, A. Kirleis J. Laster, C. Liu, Y. Luo, Y. Makdisi G. Marr A. Marusic, F. Meot, K. Mernick, R. Michnoff, M. Minty, C. Montag, J. Morris, S. Nemesure, P. Pile, A. Poblaguev, V. Ptitsyn, V. H. Ranjbar G. Robert-Demolaize, T. Roser, W. Schmidke, V. Schoefer, F. Severino, T. C. Shrey, D. Smirnov, K. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J. Tuozzolo G. Wang, M. Wilinski, S. White, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang

THANK YOU!

