Author: Dubrovskiy, A.
Paper Title Page
MOPWA038 Flashbox Compact Beam Spectrometer and its Application to the High-gradient Acceleration Study 753
 
  • A. Dubrovskiy, F. Tecker
    CERN, Geneva, Switzerland
  • M. Jacewicz, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  A Flashbox compact spectrometer has been developed for the Two-beam Test Stand (TBTS), which is a part of the CLIC test facility CTF3 at CERN. It is used to study limitations of high-gradient acceleration in X-band structures being prototyped in the TBTS. The Flashbox is built around the beam tube such that an electron beam can pass to be accelerated in the X-band structure while charged particles emitted from the accelerating structure can be intercepted on the spectrometer consisting of detector plates aligned along the beam axis in combination with magnetic and electric fields. The Flashbox has made it possible to identify electrons and ions emitted by the accelerating structure during RF breakdown. We describe the Flashbox and first results.  
 
TUPFI040 Experimental Verification of the CLIC Two-Beam Acceleration Technology in CTF3 1436
 
  • P. Skowroński, A. Andersson, J. Barranco, B. Constance, R. Corsini, S. Döbert, A. Dubrovskiy, W. Farabolini, E. Ikarios, R.L. Lillestøl, T. Persson, F. Tecker
    CERN, Geneva, Switzerland
  • W. Farabolini
    CEA/DSM/IRFU, France
  • E. Ikarios
    National Technical University of Athens, Athens, Greece
  • M. Jacewicz, A. Palaia, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • R.L. Lillestøl
    University of Oslo, Oslo, Norway
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
 
  The Compact Linear Collider (CLIC) International Collaboration is pursuing an extensive R&D program towards a multi-TeV electron-positron collider. In particular, the development of two beam acceleration technology is the focus of the CLIC test facility CTF3. In this paper we summarize the most recent results obtained at CTF3: the results of the studies on the drive beam generation are presented, the achieved two beam acceleration performance is reported and the measured break-down rates and related observations are summarized. The stability of deceleration process performed over 13 subsequent modules and the comparison of the obtained results with the theoretical expectations are discussed. We also outline and discuss the future experimental program.  
 
WEPEA069 Review of the Drive Beam Stabilization in the CLIC Test Facility CTF3 2666
 
  • A. Dubrovskiy, L. Malina, P. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
 
  CTF3 is a Test Facility focusing on beam-based studies of the key concepts of the Compact Linear Collider CLIC. Over the past several years many aspects the CLIC two-beam acceleration scheme were studied in CTF3, including the crucial issue of drive beam stability. The main sources of drifts and instabilities have been identified and mitigated, helping to improve the machine performance and showing significant progress towards the experimental demonstration of the very stringent requirements on current, energy and phase stability needed in CLIC. In this paper, the more effective techniques and feed-backs are summarized. The latest measurements on beam stability are reported and their relevance to CLIC is discussed.