Author: Drago, A.
Paper Title Page
TUOCB102 SPARC_LAB Recent Results 1114
 
  • M. Ferrario, D. Alesini, M.P. Anania, A. Bacci, M. Bellaveglia, M. Castellano, E. Chiadroni, D. Di Giovenale, G. Di Pirro, A. Drago, A. Esposito, A. Gallo, G. Gatti, A. Ghigo, T. Levato, A. Mostacci, L. Palumbo, A.R. Rossi, B. Spataro, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • G. Dattoli, E. Di Palma, L. Giannessi, A. Petralia, C. Ronsivalle, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • C. De Martinis
    INFN/LASA, Segrate (MI), Italy
  • R. Faccini
    INFN-Roma, Roma, Italy
  • M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • D. Giulietti
    UNIPI, Pisa, Italy
  • L.A. Gizzi, L. Labate
    CNR/IPP, Pisa, Italy
  • S. Lupi
    Università di Roma I La Sapienza, Roma, Italy
  • V. Petrillo, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • J.V. Rau
    ISM-CNR, Rome, Italy
  • G. Turchetti
    Bologna University, Bologna, Italy
 
  A new facility named SPARC_LAB (Sources for Plasma Accelerators and Radiation Compton with Lasers and Beams) has been recently launched at the INFN National Labs in Frascati, merging the potentialities of the an ultra-brilliant electron beam photoinjector and of a high power Ti:Sa laser. The test facility is now completed, hosting a 150 MeV high brightness electron beam injector which feeds a 12 meters long undulator. Observation of FEL radiation in variuous configurations has been performed. In parallel to that a 200 TW laser that is linked to the linac and devoted to explore laser-matter interaction, in particular with regard to laser-plasma acceleration of electrons (and protons) in the self injection and external injection modes. The facility will be also used for particle driven plasma acceleration experiments (the COMB experiment). A Thomson scattering experiment coupling the electron bunch to the high-power laser to generate coherent monochromatic X-ray radiation is also in the commissioning phase. We report in this paper the recent results obtained at the SPARC_LAB facility.  
slides icon Slides TUOCB102 [12.874 MB]  
 
WEPME061 A Wideband Slotted Kicker Design for SPS Transverse Intra-bunch Feedback 3073
 
  • J.M. Cesaratto, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • D. Alesini, A. Drago, A. Gallo, F. Marcellini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • S. De Santis
    LBNL, Berkeley, California, USA
  • W. Höfle
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP) and by the EU FP7 HiLumi LHC - Grant Agreement 284404.
Control and mitigation of transverse beam instabilities caused by electron cloud and TMCI will be essential for the SPS to meet the beam intensity demands for the HL-LHC upgrade. A wideband intra-bunch feedback method is in development, based on a 4 GS/s data acquisition and processing, and with a back end frequency structure extending to 1 GHz. A slotted type kicker, similar to those used for stochastic cooling, has been considered as the terminal element of the feedback chain. It offers the most promising deflecting structure characteristics to meet the system requirements in terms of bandwidth, shunt impedance, and beam coupling impedance. Different types of slotted structures have been explored and simulated, including a ridged waveguide and coaxial type waveguide. In this paper we present our findings and the conceptual design of a vertical SPS wideband kicker consistent with the stay clear, vacuum, frequency band coverage, and peak shunt impedance requirements.