Author: Douglas, D.
Paper Title Page
TUPME055 Strawman Optics Design for the CERN LHeC ERL Test Facility 1694
  • A. Valloni, O.S. Brüning, R. Calaga, E. Jensen, M. Klein, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • S.A. Bogacz, D. Douglas
    JLAB, Newport News, Virginia, USA
  In preparation for a future Large Hadron electron Collider (LHeC) at CERN, an ERL test facility is foreseen as a test bed for SRF development, cryogenics, and advanced beam instrumentation, as well as for studies of ERL-specific beam dynamics. The CERN ERL test facility would comprise two linacs, each consisting of 4 superconducting 5-cell cavities at 802 MHz, and two return arcs on either side. With an RF voltage of 75 MeV per linac a final electron energy of about 300 MeV is reached. The average beam current should be above 6 mA to explore the parameter range of the future LHeC. In this paper we present a preliminary optics layout.  
WEPWA068 Design Concepts for the NGLS Linac 2271
  • A. Ratti, J.M. Byrd, J.N. Corlett, L.R. Doolittle, P. Emma, J. Qiang, M. Venturini, R.P. Wells
    LBNL, Berkeley, California, USA
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
  • D. Arenius, S.V. Benson, D. Douglas, A. Hutton, G. Neil, W. Oren, G.P. Williams
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
  The Next Generation Light Source (NGLS) is a design concept for a multibeamline soft x-ray FEL array powered by a ~2.4 GeV CW superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. This paper describes the concepts under development for a linac operating at 1.3 GHZ and based on minimal modifications to the design of ILC cryomodules in order to leverage the extensive R&D that resulted in the ILC design. Due to the different nature of the two applications, particular attention is given here to high loaded Q operation andμphonics control, as well as high reliability and expected up time.  
WEPWA077 Aperture Test for Internal Target Operation in the JLAB High-current ERL 2289
  • S. Zhang, S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, J. Delk, D. Douglas, P. Evtushenko, C.W. Gould, J.G. Gubeli, F.E. Hannon, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, R.A. Legg, M. Marchlik, W. Moore, G. Neil, J. Powers, T. Powers, D.W. Sexton, M.D. Shinn, C. Tennant, R.L. Walker, G.P. Williams, F.G. Wilson
    JLAB, Newport News, Virginia, USA
  • J. Balewski, J. Bernauer, W. Bertozzi, R.F. Cowan, P.F. Fisher, E. Ihloff, A. Kelleher, R. Milner, L. Ou, B.A. Schmookler, C. Tschalär
    MIT, Middleton, Massachusetts, USA
  • N. Kalantarians
    Hampton University, Hampton, Virginia, USA
  Funding: Supported by the Commonwealth of Virginia, U.S. DOE Nuclear and High Energy Physics, and by the U.S. DOE Basic Energy Sciences under contract No. DE-AC05-060R23177.
A high current beam transmission test has been successfully completed at the JLAB FEL Facility, culminating in very low-loss transmission of a high current CW beam through a small aperture. The purpose of this test was to determine if an ERL is capable of meeting the stringent requirements imposed by the use of a 1018/cm3 internal gas target proposed for the DarkLight experiment*. Minimal beamline modifications were made to create a machine configuration that is substantially different from those used in routine UV or IR FEL operation. A sustained (8 hour) high power beam run was performed, with clean transmission through a 2 mm transverse aperture of 127 mm length simulating the target configuration. A beam size of 50 um (rms) was measured near the center of the aperture. Experimental data from a week-long test run consistently exhibited beam loss of only a few ppm on the aperture while running 4.5 mA current at 100 MeV – or nearly 0.5 MW beam power. This surpassed the users’ expectation and demonstrated a unique capability of an ERL for this type of experiments. This report presents a summary of the experiment, a brief overview of our activities, and outlines future plans.
* P. Fisher, et al.,“Jlab PR-11-008: A Proposal for the DarkLight Experiment at the Jefferson Laboratory Free Electron Laser.”