Author: Deboy, D.
Paper Title Page
MOODB202 Simulations and Measurements of Cleaning with 100 MJ Beams in the LHC 52
 
  • R. Bruce, R.W. Aßmann, V. Boccone, C. Bracco, M. Cauchi, F. Cerutti, D. Deboy, A. Ferrari, L. Lari, A. Marsili, A. Mereghetti, E. Quaranta, S. Redaelli, G. Robert-Demolaize, A. Rossi, B. Salvachua, E. Skordis, G. Valentino, V. Vlachoudis, Th. Weiler, D. Wollmann
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  • E. Quaranta
    Politecnico/Milano, Milano, Italy
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The CERN Large Hadron Collider is routinely storing proton beam intensities of more than 100 MJ, which puts extraordinary demands on the control of beam losses to avoid quenches of the superconducting magnets. Therefore, a detailed understanding of the LHC beam cleaning is required. We present tracking and shower simulations of the LHC's multi-stage collimation system and compare with measured beam losses, which allow us to conclude on the predictive power of the simulations.  
slides icon Slides MOODB202 [6.343 MB]  
 
MOPWO029 Remote Estimate of Collimator Jaw Damages with Sound Measurements during Beam Impacts 951
 
  • D. Deboy, O. Aberle, R.W. Aßmann, F. Carra, M. Cauchi, J. Lendaro, A. Masi, S. Redaelli
    CERN, Geneva, Switzerland
 
  Irregular hits of high-intensity LHC beams on collimators can lead to severe damage of the collimator jaws. The identification of damaged collimator jaws by observation of beam measurements is challenging: online loss measurements at the moment of the impacts can be tricky and degradation of the overall performance from single collimator damage can be difficult to measure. Visual inspections are excluded because collimator jaws are enclosed in vacuum tanks without windows. However, the sound generated during the beam impact can be used to give an estimate of the damage level. In 2012, high-intensity beam comparable to a full nominal LHC bunch at 7 TeV was shot on a tertiary type LHC collimator at the HiRadMat test facility at CERN. The paper presents results from sound recordings of this experiment.  
 
MOPWO031 High Energy Beam Impact Tests on a LHC Tertiary Collimator at CERN HiRadMat Facility 954
 
  • M. Cauchi, O. Aberle, R.W. Aßmann, A. Bertarelli, F. Carra, A. Dallocchio, D. Deboy, L. Lari, S. Redaelli, A. Rossi
    CERN, Geneva, Switzerland
  • M. Cauchi, P. Mollicone
    UoM, Msida, Malta
  • L. Lari
    IFIC, Valencia, Spain
  • N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The correct functioning of the collimation system is crucial to safely operate the LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN HiRadMat (High Irradiation to Materials) facility, involved 440 GeV beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained together with some first outcomes from visual inspection.  
 
MOPWO048 Cleaning Performance of the LHC Collimation System up to 4 TeV 1002
 
  • B. Salvachua, R.W. Aßmann, R. Bruce, M. Cauchi, D. Deboy, L. Lari, A. Marsili, D. Mirarchi, E. Quaranta, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
  • M. Cauchi
    UoM, Msida, Malta
  • L. Lari
    IFIC, Valencia, Spain
  • D. Mirarchi
    The Imperial College of Science, Technology and Medicine, London, United Kingdom
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  Funding: Research supported by EU FP7 HiLumi LHC (Grant agreement 284404)
In this paper we review the performance of the LHC collimation system during 2012 and compare it with previous years. During 2012, the so-called tight settings were deployed for a better cleaning and improved beta-star reach. As a result, a record cleaning efficiency below a few 0.0001 was achieved in the cold regions where the highest beam losses occur. The cleaning in other cold locations is typically a factor of 10 better. No quenches were observed during regular operation with up to 140 MJ stored beam energy. The system stability during the year, monitored regularly to ensure the system functionality for all machine configurations, and the performance of the alignment tools are also reviewed.