Author: Conway, J.V.
Paper Title Page
WEPWO059 Cornell's HOM Beamline Absorbers 2441
  • R. Eichhorn, J.V. Conway, Y. He, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, J. Sears, V.D. Shemelin, N.R.A. Valles
    CLASSE, Ithaca, New York, USA
  The proposed energy recovery linac at Cornell aims for high beam currents and short bunch lengths, the combination of which requires efficient damping of the higher order modes (HOMs) being present in the superconducting cavities. Numerical simulations show that the expected HOM power could be as high as 200 W per cavity with frequencies ranging to 40 GHz. Consequently, a beam line absorber approach was chosen. We will review the design, report on first results from a prototype and discuss further improvements.  
THPFI087 Measurements of Secondary Electron Yield of Metal Surfaces and Films with Exposure to a Realistic Accelerator Environment 3493
  • W. Hartung, J.V. Conway, C.A. Dennett, S. Greenwald, J.-S. Kim, Y. Li, T.P. Moore, V. Omanovic
    CLASSE, Ithaca, New York, USA
  One of the central goals of the CESR Test Accelerator program is to understand electron cloud (EC) effects in lepton rings and how to mitigate them. To this end, measurements of the secondary electron yield (SEY) of technical surfaces are being done in CESR. The CESR in-situ system, in operation since 2010, allows for measurements of SEY as a function of incident electron energy and angle on samples that are exposed to a realistic accelerator environment, typically 5.3 GeV electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY and discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. Measurements so far have been done on bare metal surfaces (aluminum, copper, stainless steel) and EC-mitigatory coatings (titanium nitride, amorphous carbon, diamond-like carbon). A significant decrease in SEY with exposure to beam was observed for all cases other than the amorphous C samples; for the latter, the SEY remained near 1, independent of beam exposure. The SEY results are being used to improve predictive models for EC build-up and EC-induced beam effects.  
THPFI088 Electron Cloud Diagnostic Chambers with Various EC-suppression Coatings 3496
  • Y. Li, J.V. Conway, X. Liu, M.A. Palmer
    CLASSE, Ithaca, New York, USA
  Funding: Work supported by the US National Science Foundation PHY-0734867, PHY-1002467, and the U.S. Department of Energy DE-FC02-08ER41538
Suppression of electron cloud (EC) growth and density is critical for many high intensity accelerators of positively charged particles, such as positron rings for Super KEKB and ILC’s positron damping ring. Among various suppression techniques, passive coating with low secondary electron emission (SEY) coefficient is the most economic method. During CesrTA EC study program, we have created two dedicated short sections in the CESR vacuum system to study effectiveness of various SEY reduction coatings. During last 4 years, six one-meter-long EC study vacuum chambers were constructed, and rotated through these short sections. The EC chambers were not only equipped with EC diagnostics (including a RFA and RF-shield pickups), they were also installed in CESR with vacuum instrument, including a cold cathode ion gauge and a residual gas analyzer. With these EC study chambers, EC-suppression effectiveness of TiN, amorphous carbon and diamond-like carbon coatings were evaluated, relative to bare aluminum chamber. In this report, we will report vacuum properties of these coatings. In particular, the photon-induced desorption and beam conditioning histories are presented.