Author: Comunian, M.
Paper Title Page
THPWO023 The New RFQ as RIB Injector of the ALPI Linac 3812
 
  • M. Comunian, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  At the Legnaro National Laboratories it is operating a Super Conducting linac for nuclear studies named ALPI. A new project SPES is under study to provide neutron-rich rare nuclear beams (RIB) of final energies in the order of 10 MeV/A for nuclei in the A= 9-160 mass region. The radioactive ions will be produced with the ISOL technique using the proton induced fission on a Direct Target of UCx and subsequently reaccelerated using a new injector for the ALPI accelerator complex. In this paper the new RFQ injector and the transport line to ALPI will be describe.  
 
THPWO024 PROGRESS ON DTL DESIGN FOR ESS 3815
 
  • M. Comunian, F. Grespan, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro (PD), Italy
  • R. De Prisco
    ESS, Lund, Sweden
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  In the European Spallation Source (ESS) accelerator, the Drift Tube Linac (DTL) will accelerate a proton beam of 50 mA pulse peak current from 3 to ~80 MeV. In this paper the engineering design of DTL tanks with the beam dynamics errors studies and the RF design are shown.  
 
THPWO070 ESS DTL RF MODELIZATION: FIELD TUNING AND STABILIZATION 3918
 
  • R. De Prisco
    ESS, Lund, Sweden
  • M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A.R. Karlsson
    Lund University, Lund, Sweden
 
  The Radio Frequency (RF) design of Drift Tube Linac (DTL) of the European Spallation Source, ESS, has been defined in order to satisfy the accelerating field requirements of beam dynamic studies and to reduce peak field levels in the critical areas. The electro-magnetic field is stabilized with post-couplers. The cells geometries of the DTL are optimized to accommodate permanent magnet quadrupoles (PMQ), to get maximum shunt impedance, to meet the Moretti criterion at the low energy part and to facilitate the mechanical construction.