Author: Cee, R.
Paper Title Page
THPWA004 The HIT Gantry: From Commissioning to Operation 3636
 
  • M. Galonska, S. Brons, R. Cee, Th. Haberer, K. Höppner, J.M. Mosthaf, A. Peters, S. Scheloske, T. Winkelmann
    HIT, Heidelberg, Germany
 
  The patient treatment at the first 360° raster scanning heavy ion gantry of the Heidelberg Ion Therapy Facility (HIT) started in October 2012 using proton and carbon ion beams. HIT is the first dedicated proton and carbon cancer therapy facility in Europe. It uses full 3D intensity controlled raster scanning dose delivering method of pencil beams. The ion energy ranges from ~50 up to 430 MeV/u (ion penetration depths of 20 to 300 mm in water). Beams are provided by a linac-synchrotron-system to four high energy beam lines: 2 horizontal patient treatment rooms; 1 horizontal experimental cave for quality assurance, development, and research work; and the heavy ion gantry. From the first commissioning the libraries of carbon and proton pencil beams at the gantry had been offered with the whole variety of ion beam properties: 255 energy steps, 4 beam foci, 360°, and 10 intensities (106-1010/spill) regarding the central beam. This paper reflects the impact of the subsequent preclinical testing including beam size/position, and dose measurements within the irradiation field of 20x20 cm2 on the further improvement of the ion optical settings of the gantry high energy transfer line.  
 
THPWA005 The HIT Accelerator as Part of a Medical Product: Impacts on the Maintenance Strategy 3639
 
  • A. Peters, R. Cee, Th. Haberer, T. Winkelmann
    HIT, Heidelberg, Germany
 
  The HIT accelerator produces protons and carbon beams with a large variety of parameters: 255 different energies, four foci and ten intensity steps per ion are independently available at 5 iso-centres to be requested by the dose delivery system for tumor treatment. Thus the whole accelerator chain is part of a medical product, in case of HIT an in-house manufactured device. The overall risk and quality management has deep influences on the maintenance process. Not only the huge volume of necessary documentation reflects this impact but also the organizational process before, along and after the services at HIT. Especially, the comprehensive testing after the maintenance procedures follows sophisticated checklists (e.g. the ion source service). On the other hand, a high operational availability of the accelerator in a hospital is mandatory. To realize 8250 hours of accelerator uptime per year in case of HIT, a maintenance strategy is necessary, which interleaves the regular service of the building infrastructure, e.g. air conditioning, with the periodic maintenance of the accelerator components. In detail, this approach will be discussed along the magnets and the gantry structure.