Author: Blanco, O.R.
Paper Title Page
TUOCB203 In Vacuum High Accuracy Mechanical Positioning System of Nano Resolution Beam Position Monitor at the Interaction Point of ATF2 1149
  • P. Bambade, O.R. Blanco, F. Bogard, P. Cornebise, S. Wallon
    LAL, Orsay, France
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
  ATF2 is a low energy (1.3GeV) prototype of the final focus system for ILC and CLIC linear collider projects. A major goal of ATF2 is to demonstrate the ability to stabilise the beam position at the interaction point, where the beam can be focused down to about 35 nm. For this purpose, a set of new Beam Position Monitors (BPM) has been designed, with an expected resolution of about 2 nm. These BPMs must be very well aligned with respect to the beam, at the few micron level, to fully exploit their fine resolution. In this paper, the mechanical positioning system which has been developed to enable such a precise alignment is presented. It is based on a set of eight piezo actuators with nanometer range displacement resolution, mounted in a new specially made vacuum chamber. Due to the expected resolution of the piezo actuators, this system also brings a new functionality, the possibility to calibrate the BPMs by mechanically scanning the beam.  
slides icon Slides TUOCB203 [2.276 MB]  
TUPWO003 CLIC 3 TeV Beam Size Optimization with Radiation Effects 1877
  • O.R. Blanco, P. Bambade
    LAL, Orsay, France
  • R. Tomás
    CERN, Geneva, Switzerland
  Horizontal beamsize contribution due to radiation on bending magnets is calculated using theoretical results and recent improvements in mapclass (Mapclass2). In order to verify the code and validity of its approximations, a simple lattice with no geometrical nor chromatic aberrations, one dipole and a final drift has been used to compare Mapclass2 calculations and Placet tracking results. CLIC 3TeV lattice is optimized including the radiation effects. Current results show that correction of chromatic aberrations impose constraints in radiation improvement.