In Vacuum High Accuracy Mechanical Positioning System of Nano Resolution Beam Position Monitor at the Interaction Point of ATF2

Philip Bambade

Laboratoire de l'Accélérateur Linéaire Université Paris 11, Orsay, France

On behalf of:

- LAL: Oscar BLANCO, Frédéric BOGARD, Patrick Cornebise, Sandry WALLON
- KEK: Toshiaki TAUCHI, Nobuhiro TERUNUMA

Acknowledgements:

- LAL: Max DEMAREST, Bruno LELUAN, Bruno MERCIER
- LAPP: Laurent JOURNET, Christine GASCQ

IPAC 2013 Shanghai, China, 12-17 May 2013

ATF & ATF2 R&D for linear colliders

final doublet final focus section diagnostic and matching extraction

Shintake Monitor

Monitor

IP

-6

Final Doublet

ATF / ATF2 Goals

□ Very small damping ring vertical emittance - from ~10 pm \rightarrow 4 pm (achieved !) \rightarrow 1-2 pm

□ Small vertical beam size

- achieve σ_v ~37 nm (cf. 5 / 1 nm in ILC / CLIC)
- validate "compact local chromaticity correction"

Stabilization of beam center

- down to ~ 2nm
- bunch-to-bunch feedback (~300 ns, for ILC)

R&D on nanometer resolution instrumentation

□ Train young accelerator scientists on "real system"

- maintain expertise by practicing operation

→ open & unique facility

"goal 1"

"goal 2"

ATF International Collaboration

Number of PhD/Master Thesis

ATF2 goal 2 : nm-beam position stabilization

Methodology for stabilization

Goal 1 (beam size ~ 37 nm)bGoal 2 (nm-scale stability with feedback)b

beam jitter < 10 nm beam jitter ~ 2 nm

- 1. Measure stability at one of IP-BPMs after shifting the beam waists there
- 2. Infer position from measurements at the two other IP-BPMs
- 3. Use fast kicker just upstream to correct second bunch within ATF2 train
- 4. Optional: use fast feedback upstream to check for improved IP stability
- 5. Optional: use fast kicker upstream for corrections based on IP-BPMs
- 6. Optional (goal 1): correct data if second bunch in IP-BSM beam size analysis

Prior scale factor calibration and system resolution study

Required precision on relative IP-BPM scale factors depends on beam parameters

Requirements for new IP chamber

- 1. Pre-alignment of IP-BPM set with respect to rest of beam line < 200 μ m
- 2. Internal pre-positioning accuracy $\sim 50 \ \mu m$
- 3. Remote relative positioning via beam based alignment within < 5 μ m (dynamic range of IP-BPM electronics)
- 4. Mechanical calibration of IP-BPM scale factors $\rightarrow 10^{-4}$
- 5. Compatibility with IP-BSM operation (viewports for lasers, wire-scanner, electron / laser beam alignment...)

Present IP-chamber (FFTB)

Main features of new IP chamber

- 1. Mechanical references for precise pre-positioning and alignment
- 2. Adjustable fixture for rigid mount on IP-BSM optical table
- 3. Base-plate + cradles support BPM1-2 and BPM3 in tripod configurations
- 4. Lateral & vertical adjustments with 8 piezo-movers in 230-300 μ m range
- 5. Positioning within 10⁻⁴ of the range (strain gauges as input to feedback)
- 6. In-vacuum temperature monitoring
- 7. Remote electronics (25 meter cables)

Mechanical parts almost completed

- Modifications, alignment tools and temporary flanges at LAL
- Mounting fixtures on IP-BSM vertical table and for vibration sensor on chamber at LAL
- Upstream chamber extension, viewports extensions, final upstream / downstream flanges and tool for in situ relative laser / beam / IP-BPM alignment in progress at KEK

4 PI piezo-actuators

4 Cedrat piezo-actuators

Dimensional checks

Performed with 3D Mitutoyo machine (5 μm accuracy, 1 μm resolution)

- → Chamber and internal parts : OK
- → Bruno Leluan, LAL Orsay

Mires

Position of internal references were measured with regard of external references (for mires)

ightarrow Data useful for BPMs external pre-alignment

Adjustment of BPM positioning system

BPMs position will be adjusted with respect of interfaces « Chamber / BPMs displacement system »

- → Place shims (SS foil, 20 µm min. thick) below actuators
- → Check BPMs position / interfaces with 3D machine
- → Unmounting, remounting and recheck as repeatability test

Delayed to May (availability of 3D machine)

→ Bruno Leluan & Sandy Wallon, LAL Orsay

BPMs positioning tool : give the right position to BPMs (distance to IP, lateral positioning, yaw, pitch (with third flat spot)). Note : roll adjustment done when BPM is mounted to craddle/bracket

Vacuum test of chamber & piezo-actuators completed

Outgasing of both PI and Cedrat with cables are OK :

➔ flowrate at 8x10-8 mbar.l/s (suitable for UHV)

→ at 21° C and after 100 hours of pumping, no organic compound detected.

He leak test OK :

→ Flowrate at 3x10⁻⁸ Atm.cm³/s (suitable for UHV)

Data :

- All parts cleaned (SS insert removed and then reinstalled)
- 1.5 mm dia. indium seal (wire)
- Indium wire flaten up to 0.15 mm thickness (screws tightened at 6 Nm)
- Aluminum flanges with 0.7 mm dia. groove for wire positioning
- Test performed at 10-5 mbar

Piezo-mover performance checks :

- almost completed for PI
- started for Cedrat (noisy controller power supply was affecting read-back)

- Closed-loop stability
- Open-loop stability
- Setting accuracy
- Calibration
- Thermal effects
- Vibration mitigation

BPM3 – PI vertical movers – 5V / 5.001V alternatively

The 3 movers are stimulated at 5V (1,5s) then at 5.001 V (1,5s) during this experiment.

Results at 5V/5.001V alternatively during 1,5s

PI movers characterization

With feedback

Without feedback

Near term prospects

- Still some tests & adjustments: (de)mount, Cedrat performance
- Preparations for shipment (paperwork & packaging) end of May
- Delivery at KEK mid June
- Installation at KEK scheduled in first two weeks of July
- Commissioning with beam in Autumn 2013

Concluding remarks

- A mechanical support and positioning system prepared to meet the requirements of the IP-BPM project at ATF2
- Re-establish IP-BSM setup procedure with new IP chamber
- Overall vibration studies planned with help of LAPP-Annecy team
- Residuals from thermal effects will be important to consider
- Prospect of combined goal 1 + 2 operation

Stay tuned for very small & very stable beams at ATF2 !

ATF / ATF2 at IPAC 2013

- WEPME053 Latest Performance Results from the FONT 5 Intra Train Beam Position Feedback System at *ATF*
- MOPME058 Development of a cavity-type beam position monitors with high resolution for ATF2
- MOPWA058 Cavity Beam Position Monitor at Interaction Region of ATF2
- MOPME003 Development of Diamond Sensors for Beam Halo and Compton Spectrum Diagnostics after the Interaction Point of ATF2
- MOPWA052 Short Range Wakefield Measurements of High Resolution RF Cavity Beam Position Monitors at ATF2
- MOPWA053 Sub-Micrometre Resolution Laser-wire Transverse Beam Size Measurement System
- MOPWO023 Upgrade and Systematic Measurement Campaign of the ATF2 Multi-OTR System
- TUPME030 Emittance Reconstruction from Measured Beam Sizes
- TUPWO017 Simulation on the Breaking of αx Multiknob Orthogonality in the Presence of Gradient and Coupling Errors and Experimental Investigation
- MOPME018 Beam oscillation monitor for the multi-bunch beam
- TUPME045 Turn-by-turn Measurements in the KEK-ATF