Author: Behrens, C.
Paper Title Page
MOPME011 Investigation of the Applicability of Parametric X-ray Radiation for Transverse Beam Profile Diagnostics 491
 
  • G. Kube, C. Behrens
    DESY, Hamburg, Germany
  • A.S. Gogolev, Yu.A. Popov, A. Potylitsyn
    TPU, Tomsk, Russia
  • W. Lauth
    IKP, Mainz, Germany
  • S. Weisse
    DESY Zeuthen, Zeuthen, Germany
 
  Transverse beam profile diagnostics in electron linacs is widely based on optical transition radiation (OTR) as standard technique which is observed in backward direction when a charged particle beam crosses the boundary between two media with different dielectric properties. The experience from modern linac based light sources like LCLS or FLASH shows that OTR diagnostics might fail because of coherence effects in the OTR emission process. A possibility to overcome this limitation is to measure at much shorter wavelengths, i.e. in the X-ray region, using parametric X-ray radiation (PXR) which additionally offers the advantage to be generated at crystal planes oriented under a certain angle to the crystal surface, thus allowing a spatial separation from a possible COTR background *. A first test experiment has been performed at the Mainz Microtron MAMI (University of Mainz, Germany) in order to study the applicability of PXR for beam diagnostics, and the status of this experiment will be presented.
* A. Gogolev, A. Potylitsyn, G. Kube, Journal of Physics 357 (2012) 012018
 
 
WEOBB201 Commissioning of the X-band Transverse Deflector for Femtosecond Electron/X-Ray pulse Length Measurements at LCLS 2091
 
  • Y.T. Ding, C. Behrens, J.C. Frisch, Z. Huang, P. Krejcik, J.R. Lewandowski, H. Loos, J.W. Wang, M.-H. Wang, J.J. Welch
    SLAC, Menlo Park, California, USA
  • C. Behrens
    DESY, Hamburg, Germany
 
  X-ray free-electron lasers provide ultrashort x-ray pulses from several to a few hundred femtoseconds for multidisciplinary users. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam and the x-ray pulses. A new diagnostic scheme adding a transverse radio-frequency deflector at the end of the linac coherent light source (LCLS) undulator beamline has been proposed*. Two 1-m long deflecting structures have been installed at LCLS during the summer of 2012. Installation of the high power RF components including the klystron, waveguide, RF controls etc. is proceeding and commissioning is scheduled for March 2013. We report the latest progress of the commissioning of the deflector at LCLS.
* Y. Ding et al., Phys. Rev. ST Accel. Beams 14, 120701 (2011)
 
slides icon Slides WEOBB201 [4.199 MB]  
 
WEOBB201 Commissioning of the X-band Transverse Deflector for Femtosecond Electron/X-Ray pulse Length Measurements at LCLS 2091
 
  • Y.T. Ding, C. Behrens, J.C. Frisch, Z. Huang, P. Krejcik, J.R. Lewandowski, H. Loos, J.W. Wang, M.-H. Wang, J.J. Welch
    SLAC, Menlo Park, California, USA
  • C. Behrens
    DESY, Hamburg, Germany
 
  X-ray free-electron lasers provide ultrashort x-ray pulses from several to a few hundred femtoseconds for multidisciplinary users. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam and the x-ray pulses. A new diagnostic scheme adding a transverse radio-frequency deflector at the end of the linac coherent light source (LCLS) undulator beamline has been proposed*. Two 1-m long deflecting structures have been installed at LCLS during the summer of 2012. Installation of the high power RF components including the klystron, waveguide, RF controls etc. is proceeding and commissioning is scheduled for March 2013. We report the latest progress of the commissioning of the deflector at LCLS.
* Y. Ding et al., Phys. Rev. ST Accel. Beams 14, 120701 (2011)
 
slides icon Slides WEOBB201 [4.199 MB]