Author: Bai, S.
Paper Title Page
MOPME003 Development of Diamond Sensors for Beam Halo and Compton Spectrum Diagnostics After The Interaction Point of ATF2 470
  • S. Liu, P. Bambade
    LAL, Orsay, France
  • S. Bai
    IHEP, Beijing, People's Republic of China
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
  ATF2 is a low energy (1.3GeV) prototype of the final focus system for ILC and CLIC linear collider projects. A major issue at ATF2 and in linear colliders is to control the beam halo, which consists of tails extending far beyond the Gaussian core of the beam. At present there is no dedicated collimation for the beam halo at ATF2, and the transverse distribution near the interaction point is not well known. The development of a sensor based on CVD diamond to scan the beam halo in the vacuum chamber a few meters after the interaction point is presented. This system also aims to detect the Compton recoil electrons generated by the laser interferometer (Shintake monitor) used to measure the beam size at the interaction point of ATF2.  
TUPWO017 Simulation on the Breaking of αx Multiknob Orthogonality in the Presence of Gradient and Coupling Errors and Experimental Investigation 1919
  • S. Bai, J. Gao
    IHEP, Beijing, People's Republic of China
  • P. Bambade
    LAL, Orsay, France
  • G.R. White
    SLAC, Menlo Park, California, USA
  The ATF2 project is the final focus system prototype for ILC and CLIC linear collider projects, with a purpose to reach a 37nm vertical beam size at the interaction point. In beam tuning towards the goal beam size, the presence of a tilt of the IP Shintake monitor fringe pattern with respect to the x-y coordinate system of the beam can break the orthogonality in the main σ34 and σ32 waist corrections required to reduce the vertical beam size at IP. Concerning the method of doing αx scan and measuring the vertical beam size to diagnose the IPBSM fringe tilt or residual σ13, one thing should be studied is to check what could break the orthogonality of the αx knob other than σ13 and the IPBSM fringe tilt. In this paper, we report on the simulation study that check for the breaking of orthogonality of the αx knob in the presence of gradient and coupling errors; to what extent this breaking of orthogonality can go; and also calculate the IPBSM fringe tilt angle from experiment results.