Author: Baglin, V.
Paper Title Page
MOPWA030 Upgrade of the LHC Injection Kicker Magnets 729
 
  • M.J. Barnes, P. Adraktas, V. Baglin, G. Bregliozzi, S. Calatroni, F. Caspers, H.A. Day, L. Ducimetière, M. Garlaschè, V. Gomes Namora, J.M. Jimenez, N. Magnin, V. Mertens, E. Métral, B. Salvant, M. Taborelli, J.A. Uythoven, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The two LHC injection kicker systems, comprising 4 magnets per ring, produce a kick of 1.3 T.m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the high intensity LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns while providing an adequate beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, now results in substantial heating of the ferrite yoke, sometimes requiring cool down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all 8 kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will also be modified to help reduce the vacuum pressure in the kickers during high-intensity operation. This paper discusses the upgrades as well as their preparation and planning.  
 
TUPFI002 Electron Cloud and Scrubbing Studies for the LHC 1331
 
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • G. Arduini, V. Baglin, H. Bartosik, C.O. Domínguez, J.F. Esteban Müller, G. Iadarola, G. Rumolo, E.N. Shaposhnikova, L.J. Tavian, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.O. Domínguez
    EPFL, Lausanne, Switzerland
  • G.H.I. Maury Cuna
    CINVESTAV, Mexico City, Mexico
 
  Electron cloud build-up resulting from beam-induced multipacting is one of the major limitations for the operation of the LHC with beams with close bunch spacing. Electron clouds induce unwanted pressure rise, heat loads on the beam screens of the superconducting magnets and beam instabilities. Operation with bunch spacing of 50 ns in 2011 and 2012 has required decreasing the Secondary Electron Yield of the beam screens below the multipacting threshold for beams with this bunch spacing. This was achieved by continuous electron bombardment induced by operating the machine with high intensity beams with 50 and 25 ns spacing during dedicated periods at injection energy (450 GeV) and at top energy (3.5 and 4 TeV). The evolution of the Secondary Electron Yield during these periods, at different sections of the machine, can be estimated by pressure, heat load and by bunch-by-bunch RF stable phase measurements. The experimental information on the scrubbing process will be discussed and a possible “scrubbing strategy” to allow the operation with 50ns and 25ns beams after the Long Shutdown in 2013-2014 will be presented.  
 
TUPME032 Update on Beam Induced RF Heating in the LHC 1646
 
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, W. Bartmann, P. Baudrenghien, O.E. Berrig, A. Bertarelli, C. Bracco, E. Bravin, G. Bregliozzi, R. Bruce, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, M. Deile, J.F. Esteban Müller, P. Fassnacht, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, S. Jakobsen, O.R. Jones, O. Kononenko, G. Lanza, L. Lari, T. Mastoridis, V. Mertens, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, R. Schmidt, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
 
  Since June 2011, the rapid increase of the luminosity performance of the LHC has come at the expense of increased temperature and pressure readings on specific near-beam LHC equipment. In some cases, this beam induced heating has caused delays whilie equipment cools down, beam dumps and even degradation of these devices. This contribution gathers the observations of beam induced heating attributable to beam coupling impedance, their current level of understanding and possible actions that are planned to be implemented during the long shutdown in 2013-2014.  
 
TUPWA042 Lessons Learned and Mitigation Measures for the CERN LHC Equipment with RF Fingers 1802
 
  • E. Métral, O. Aberle, R.W. Aßmann, V. Baglin, M.J. Barnes, O.E. Berrig, A. Bertarelli, G. Bregliozzi, S. Calatroni, F. Carra, F. Caspers, H.A. Day, M. Ferro-Luzzi, M.A. Gallilee, C. Garion, M. Garlaschè, A. Grudiev, J.M. Jimenez, O.R. Jones, O. Kononenko, R. Losito, J.L. Nougaret, V. Parma, S. Redaelli, B. Salvant, P.M. Strubin, R. Veness, C. Vollinger, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  Beam-induced RF heating has been observed in several LHC components when the bunch/beam intensity was increased and/or the bunch length reduced. In particular eight bellows, out of the ten double-bellows modules present in the machine in 2011, were found with the spring, which should keep the RF fingers in good electrical contact with the central insert, broken. Following these observations, the designs of all the components of the LHC equipped with RF fingers have been reviewed. The lessons learnt and mitigation measures are presented in this paper.  
 
THPFI049 Evaluation of the NEG Coating Saturation Level after 3 Years of LHC Beam Operation 3397
 
  • G. Bregliozzi, V. Baglin, J.M. Jimenez, G. Lanza, T. Porcelli
    CERN, Geneva, Switzerland
 
  The room temperature vacuum system of the Large Hadron Collider (LHC) at CERN system has been designed to ensure vacuum stability and beam lifetime of 100 h with nominal current of 0.56 A per beam at 7 TeV of energy. During last two years the LHC operated with proton beams at a maximum energy of 4 TeV, coasting for several hours each time, inducing high pressure due to different effects: synchrotron radiation, electron cloud and localized temperature increase. All these phenomena generated an important gas load from the vacuum chamber walls, which led in some cases to a partial or a total saturation of the NEG coating. To keep the design vacuum performances and to schedule technical interventions for NEG vacuum reactivation, it is necessary to take into account all these aspects and to regularly evaluate the saturation level of the NEG coating. This study analyses the saturation level of the NEG coated beam pipes in the LHC accelerator. Pressure reading variation without proton beams circulating are analysed and combined with laboratory studies of the NEG saturation behaviour and with Vacuum Stability Code (VASCO) simulations.