Author: Antoniou, F.
Paper Title Page
TUPME046 Performance of SPS Low Transition Energy Optics for LHC Ion Beams 1667
 
  • F. Antoniou, G. Arduini, H. Bartosik, T. Bohl, S. Cettour Cave, K. Cornelis, D. Manglunki, Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  An optics with low transition energy has been developed in the SPS for removing intensity limitations of the LHC proton beam and has become operational towards the second part of the 2012 LHC proton run. This optics was also used for filling the LHC with lead ions during the p/Pb run of the beginning of 2013. The impact of this optics in the performance of the LHC ion beam is studied here, especially with respect to collective effects, at the SPS injection energy. In particular, the potential gain of the increased beam sizes provided by this optics, with respect to losses and emittance blow up due to space-charge and Intrabeam Scattering (IBS) is evaluated. The measured lifetime is compared with the one provided by the Touschek effect and its interplay with RF noise is studied. The models are supported by measurements in the SPS and in the LHC flat bottom.  
 
WEXB101 Optics Optimization for Reducing Collective Effects and Raising Instability Thresholds in Lepton and Hadron Rings 2033
 
  • Y. Papaphilippou, F. Antoniou, H. Bartosik
    CERN, Geneva, Switzerland
 
  This paper covers recent progress in the design of optics solutions to minimize collective effects such as beam instabilities, intra-beam scattering or space charge in hadron and lepton rings. The necessary steps are reviewed for designing the optics of high-intensity and high-brightness synchrotrons but also ultra-low emittance lepton storage rings, whose performance is strongly dominated by collective effects. Particular emphasis is given to proposed and existing designs illustrated by simulations and beam measurements.  
slides icon Slides WEXB101 [24.511 MB]  
 
THPFI056 Design Study for a Future LAGUNA-LBNO Long-baseline Neutrino Facility at CERN 3418
 
  • I. Efthymiopoulos, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, M. Calviani, A. Ferrari, R. Garoby, F. Gerigk, S.S. Gilardoni, B. Goddard, A. Kosmicki, C. Lazaridis, J.A. Osborne, Y. Papaphilippou, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg, P. Velten, H. Vincke
    CERN, Geneva, Switzerland
 
  A design study for a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY) at CERN was initiated in September 2011, supported by EU/FP7 funds. The beam will be aimed at a next generation deep-underground neutrino observatory located at the Pyhasalmi (Finland) mine at a distance of 2300 km. In an initial phase the CN2PY facility will use a 400 GeV beam extracted from SPS up to a maximum power of 750 kW, and in a second phase a 2 MW beam of about 50 GeV produced by a new High-Power Proton Synchrotron accelerator using the LP-SPL as injector also under design. The paper will focus on the design challenges of this MW-class facility and on the optimization studies of the secondary beam elements (target and horns) to produce a neutrino beam spectrum that matches best the experimental requirements for neutrino flavor oscillations and CP-violation tests. The challenges and bottlenecks in the existing CERN accelerator complex to produce the high-intensity beams foreseen for this facility at the initial phase are discussed.  
 
THPWO081 Design Options of a High-power Proton Synchrotron for LAGUNA-LBNO 3948
 
  • Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, I. Efthymiopoulos, R. Garoby, F. Gerigk, B. Goddard, C. Lazaridis, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Design studies have been initiated at CERN, exploring the prospects of future high-power proton beams for producing neutrinos, within the LAGUNA-LBNO project. These studies include the design of a 2 MW high-power proton synchrotron (HP-PS) using the LP-SPL as injector. This paper resumes the design options under study in order to reach this high power, and their implications regarding layout, magnet technology beam loss control and RF considerations. Optics optimization studies are also presented including beam transfer and collimation considerations.