Author: An, Shizhong.
Paper Title Page
MOPFI028 Physical Design Progress of an 800 MeV High Power Proton Driver 342
 
  • J.J. Yang, Shizhong. An, M. Li, T.J. Zhang, J.Q. Zhong
    CIAE, Beijing, People's Republic of China
 
  We presented the conceptual design of an 800 MeV high power proton ring cyclotron in the paper[1] . A more detailed physical design was carried out since then. The most challenging issues regarding the high power operation, including the space charge effects and beam loss during the extraction, are quantitatively studied by using state-of-the-art high performance computation technique. On that basis the fundamental structure of the cyclotron is adjusted and optimized so as to meet the requirements of MW-class operation. Reference: [1] T. Zhang, J. Yang, M. Li, et. al., Conceptual design of an 800 MeV high power proton driver, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269(24) (2011) 2964-2967  
 
MOPFI029 The Construction Progress of Beijing Radioactive Ion-beam Facility 345
 
  • T.J. Zhang, Shizhong. An, B.Q. Cui, Z.G. Li, Y.L. Lu, C.H. Peng, F. Yang
    CIAE, Beijing, People's Republic of China
 
  The Beijing Radioactive Ion-Beam Facility (BRIF) is being constructed at CIAE. The project consists of a 100 MeV high intensity cyclotron CYCIAE-100, an ISOL system with a mass resolution of 20000, and a superconducting booster. The construction of the building was started on April 28, 2011 and the roof was sealed on Jan. 16, 2012. The on-site installation conditions have been ready since Sept. 27, 2012. Up to now, the fabrication of all major components for CYCIAE-100 have been completed, including the main magnet system, the RF system, ion source and injection, main vacuum, etc. The equipment fabrication for the ISOL system has been completed and magnetic mapping and shimming is being performed on the large-scale analysis magnet. The fabrication of the major components for the superconducting booster has been accomplished, and the work on copper-niobium sputtering is under way. At present, the installation and assembly is in full swing and the beam commissioning is to predicted to be finished in mid 2013. Taking advantage of the experiences accumulated on the CRM cyclotron with beam up to 430 uA, it is likely that the first beams of 100 MeV can be achieved by the end of 2013.  
 
TUPWA011 Investigation of Emittance Growth in a Small PET Cyclotron CYCIAE-14 1745
 
  • M. Li, Shizhong. An, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  In order to satisfy the rapidly increased domestic needs for PET in China, a small medical cyclotron named CYCIAE-14 is designed and constructed in CIAE ( China Institute of Atomic Energy ) . As the beam intensity in CYCIAE-14 is high, the beam emittance should be controlled strictly in order to reduce the beam loss in the cyclotron. Precessional mixing and resonance crossing are the two main factors leading to emittance growth in the cyclotron with stripping extraction. In this paper, the physical mechanism of precessional mixing in a stripping extraction cyclotron is investigated. After that, the maximum allowable field errors in CYCIAE-14 are derived using the Hamiltonian formalism and numerical simulation, which provides a reference for the cyclotron design and field shimming.  
 
THPFI018 The Design and Construction of Stripping Probe System for CYCIAE-100 3333
 
  • Shizhong. An, F.P. Guan, P.Z. Li, L.P. Wen, H.D. Xie, Z.G. Yin, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  A 100 MeV H compact cyclotron is being constructed in China Institute of Atomic Energy (CYCIAE-100). 75 MeV - 100 MeV proton beams with 200 μA beam intensity will be extracted in dual opposite directions by charge exchange stripping devices. Two stripping probes with carbon foils are inserted radially in the opposite direction from the main magnet pole and the obtained two proton beams after stripping foil are transported into the crossing point in a combination magnet center separately under the fixed main magnetic field. Because of the large energy range of the extracted beam, the stripping probe system is the most critical and complicated device in the dual extraction. In order to save the foil changing time, the structure of the foil changing system in the vacuum is adopted. The foil automatic changing machine is outside the magnetism yoke and 12 pieces foil can be changed in one time. The design and fabrication of the probe system has been finished and it is going to the progress of installation and adjusting. The experimental verification on probe rod driving and foil changing system has been finished in 2010. The whole stripping extraction system will be installed in 2013.