Author: Alemany-Fernandez, R.
Paper Title Page
MOODB201 Proton-nucleus Collisions in the LHC 49
  • J.M. Jowett, R. Alemany-Fernandez, P. Baudrenghien, D. Jacquet, M. Lamont, D. Manglunki, S. Redaelli, M. Sapinski, M. Schaumann, M. Solfaroli Camillocci, R. Tomás, J.A. Uythoven, D. Valuch, R. Versteegen, J. Wenninger
    CERN, Geneva, Switzerland
  Following the high integrated luminosity accumulated in the first two Pb-Pb collision runs in 2010 and 2011, the LHC heavy-ion physics community requested a first run with p-Pb collisions. This almost unprecedented mode of collider operation was not foreseen in the baseline design of the LHC whose two-in-one magnet design imposed equal rigidity and, hence, unequal revolution frequencies, during injection and ramp. Nevertheless, after a successful pilot physics fill in 2012, the LHC provided 31 nb-1 of p-Pb luminosity per experiment, at an energy of 5.02 TeV per colliding nucleon pair, with several variations of the operating conditions, in early 2013. Together with a companion p-p run at 2.76 TeV, this was the last physics before the present long shutdown. We summarise the beam physics, operational adaptations and strategy that resulted in extremely rapid commissioning. Finally, we give an account of the progress of the run and provide an analysis of the performance.  
slides icon Slides MOODB201 [6.547 MB]  
TUPFI010 The LHCb Online Luminosity Control and Monitoring 1346
  • R. Alemany-Fernandez, F. Follin, R. Jacobsson
    CERN, Geneva, Switzerland
  The online luminosity control consists of an automatic slow real-time feedback system controlled by specific LHCb software, which communicates directly with a LHC software application. The LHC application drives a set of corrector magnets to adjust the transversal beam overlap at the LHCb interaction point in order to keep the instantaneous luminosity aligned to the target luminosity provided by the experiment. It was proposed and tested first in July 2010, and it has been in routine operation during the first two years of physics luminosity data taking, 2011 and 2012. This paper describes the operational performance of the LHCb experiment and the LHC accelerator during the luminosity control of the experiment, the accounting of the recorded luminosity and dead time of the detector, and analyses the beam stability during the adjustment of the transverse beam overlap at the interaction point.  
TUPFI011 Study and Operational Implementation of a Tilted Crossing Angle in LHCb 1349
  • R. Alemany-Fernandez, F. Follin, B.J. Holzer, D. Jacquet, R. Versteegen, J. Wenninger
    CERN, Geneva, Switzerland
  The current crossing angle scheme at LHCb interaction point (horizontal crossing angle and vertical beam separation) prohibits the use of the LHCb dipole positive polarity for 25 ns bunch spacing operation since the beam separation at the first parasitic encounter is very small inducing unwanted beam encounters. To overcome this limitation a different crossing angle scheme was proposed in 2007 by W. Herr and Y. Papaphilippou. The new schema implies a vertical external crossing angle that together with the horizontal internal crossing angle, from the LHCb dipole and its three compensator magnets, defines a new tilted crossing and separation plane providing enough beam separation at the parasitic encounters. This paper summarizes the feasibility study of the new crossing scheme, the implementation in routine operation and analyzes the beam stability during the building up of the tilted crossing plane.  
TUPME060 Tune Studies with Beam-Beam Effects in LHC 1703
  • S. Paret, J. Qiang
    LBNL, Berkeley, California, USA
  • R. Alemany-Fernandez, X. Buffat, R. Calaga, K. Cornelis, M. Fitterer, R. Giachino, W. Herr, A. Macpherson, G. Papotti, T. Pieloni, S. Redaelli, F. Roncarolo, M. Schaumann, R. Suykerbuyk, G. Trad
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
  Funding: This work was partially supported by the U.S. LARP and the NERSC of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
In high brightness colliders, the tune spread due to the collisions has a significant impact on the quality of the beams. The impact of the working point on emittance growth and beam lifetime has been observed in beam experiments in LHC. Strong-strong beam-beam simulations that were accomplished to better understand such observations are shown. Compared to experiments, wide ranged parameter scans can be done easily. Tune footprints and scans of the emittance growth obtained from simulations are discussed. Three cases are considered: Very high intensity, moderate intensity and collisions with separated beams.