Author: Akai, K.
Paper Title Page
TUYB101 Progress in Super B-Factories 1096
  • K. Akai
    KEK, Ibaraki, Japan
  The upgrade of B-Factories to Super B-Factories, which will search for new physics beyond the Standard Model, opens the way for new luminosity frontier. The status of Super B-Factories will be reported.  
slides icon Slides TUYB101 [42.300 MB]  
WEPME014 Progress in Development of New LLRF Control System for SuperKEKB 2953
  • T. Kobayashi, K. Akai, K. Ebihara, A. Kabe, K. Nakanishi, M. Nishiwaki, J.-I. Odagiri
    KEK, Ibaraki, Japan
  • H. Deguchi, K. Harumatsu, K. Hayashi, T. Iwaki, J. Mizuno, J. Nishio, M. Ryoshi
    Mitsubishi Electric TOKKI Systems, Amagasaki, Hyogo, Japan
  For the SuperKEKB project, a new LLRF control system was developed to realize high accuracy and flexibility. It is an FPGA-based digital RF feedback control system using 16-bit ADC's, which works on the μTCA platform. The FPGA boards control accelerating cavity fields and cavity tuning, and the EPICS-IOC is embedded in each of them. The CSS-BOY was adopted for a user interface of our system. High power test of the new LLRF control system was performed with the ARES Cavity of KEKB. The obtained feedback control stability with a klystron drive was sufficient as well as the low-level evaluation result. And auto tuner control also worded successfully. The start-up sequencer program for the cavity operation and auto-aging program also worked very well. The temperature characteristics of the system depend largely on band-pass filters (BPF). We tried to tune the BPF to reduce the temperature coefficient. Consequently the temperature dependence was improved to satisfy the required stability.