Author: Ahlback, J.     [Ahlbäck, J.]
Paper Title Page
THPFI043 The Status of the Vacuum System of the MAX IV Laboratory 3382
  • E. Al-Dmour, J. Ahlbäck, D. Einfeld, M.J. Grabski, P.F. Tavares
    MAX-lab, Lund, Sweden
  • Ł. Walczak
    Solaris, Kraków, Poland
  All the vacuum chambers of the 3 GeV storage ring of MAX IV laboratory are under production. NEG coating R&D has been done to validate technical solutions for the coating process. The standard vacuum chambers for the 1.5 GeV ring of MAX IV and Solaris are designed and they are in the procurement process. We present an update in the technical design of the vacuum chambers following the interaction with the manufacture, the implications on the production due to NEG coating and the design of the vacuum chambers of the 1.5 GeV storage ring.  
THPFI044 NEG Thin Film Coating Development for the MAX IV Vacuum System 3385
  • M.J. Grabski, J. Ahlbäck, E. Al-Dmour, P.F. Tavares
    MAX-lab, Lund, Sweden
  • S. Calatroni, P. Chiggiato, P. Costa Pinto, M. Taborelli
    CERN, Geneva, Switzerland
  The new synchrotron radiation facility of the MAX IV laboratories is under construction and expected to deliver the first light beam in 2016. To cope with the small aperture, the intense photon bombardment and the low-pressure requirement, most of the beam pipes for the 3-GeV ring are going to be coated with Ti-Zr-V non-evaporable getter (NEG) thin films. To take advantage from the experience acquired during the construction of the Large Hadron Collider (LHC), collaboration between CERN and MAX IV Laboratories has been set up. The choice of the extruded Cu tubes, the preliminary surface treatments, the coating configuration, and the performance validation of the small-diameter vacuum chambers have been addressed. In parallel, an intense development has been tackled at CERN for the coating of vacuum chambers where photon and electron beams circulate in separate pipes. The most important results of the collaboration are presented and future perspectives pointed out.