Author: Zhu, K.
Paper Title Page
THEPPB010 Simulation of Plasma Window for Gas Target of Neutron Source 3251
  • S. Huang, S. BenLiang, Y.R. Lu, K. Zhu
    PKU/IHIP, Beijing, People's Republic of China
  the demand of intense mono-energy fast neutron beams grow quickly as various applications of neutron are improved. Utilizing the reaction and based on small accelerators especially the modern radio-frequency quadrupole (RFQ) accelerators to get several mA of ion beam to energies in the low MeV range, or even just only connecting to a ion source with LEBT, the neutron source can be as compact as possible to get intense fast neutrons. Traditional gas target of high pressure is sealed by several thick metal foil from the vacuum environment, which will decrease and disperse the energy of the ion beams, and at the same time reduce the strength and cause the production of rays. In the other aspects, the foil window could be damaged with short service life result from the high heat flux of the ion beam injection. To prevent of these problems, a plasma window is designed to maintain a high pressure gap between the gas target (several bar) and the vacuum vessel, with no material window at all. In this article both the computational simulation and experiment results of the plasma window will be included.  
THPPC013 Progress on Coupled RFQ-SFRFQ Accelerator for Materials Irradiation Research 3302
  • Z. Wang, J.E. Chen, S.L. Gao, Z.Y. Guo, Y.R. Lu, S.X. Peng, W.L. Xia, X.Q. Yan, J. Zhao, K. Zhu
    PKU/IHIP, Beijing, People's Republic of China
  Funding: Project supported by the National Natural Science Foundation of China (Grant No.10905003) and China Postdoctoral Science Foundation.
There is always high interest to study material irradiation damage effects based on accelerators. The bombardment of solids with high energy particles causes some changes in many important engineering properties. By implanting helium ions, it may be possible to simulate the damage process occurs in vessels and unravel the complexμstructural andμchemical evolutions that are expected in advanced nuclear energy systems. A materials irradiation facility based on coupled RFQ-SFRFQ accelerator will be built in Peking University, attribute to the commissioning of prototype SFRFQ accelerator, we have coupled the SFRFQ electrodes and the traditional RFQ electrodes in one cavity to form a more compact accelerator which can provide helium beam with energy of 0.8MeV for materials irradiation research.
THPPP041 A CW High Charge State Heavy Ion RFQ Accelerator for SSC-LINAC Injector 3826
  • G. Liu, J.E. Chen, S.L. Gao, Y.R. Lu, Z. Wang, X.Q. Yan, Q.F. Zhou, K. Zhu
    PKU/IHIP, Beijing, People's Republic of China
  • Y. He, C. Xiao, Y.Q. Yang, Y.J. Yuan, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
  Funding: Supported by NSFC(11079001).
The cooler storage ring synchrotron CSR of HIRFL started running in 2008. The SFC (Sector Focusing Cyclotron) and SSC (Separator Sector Cyclotron) form an injector for the CSR. To improve beam intensity and/or injection efficiency, a new linear injector, the SSC-LINAC, for the SSC has been proposed to replace the existing SFC. The SSC-LINAC consists of an ECR ion source, LEBT, a RFQ, MEBT, and four IH-DTLs. This paper only represents the design research of the RFQ accelerator, which has a frequency of 53.667MHz. The ions up to uranium with ratio of mass-to-charge up to 7 are accelerated and injected into the CSR by the SSC-LINAC. The SSC-LINAC works on CW mode. The RFQ beam dynamic design study is based on 238U34+ beams with intensity of 0.5mA. The inter-vane voltage is 70kV with a maximum modulation factor of 1.93. It uses a 2.5m-long 4-rod structure to accelerate uranium ions from 3.728keV/u to 143keV/u with transmission efficiency of 94%. The RFQDYN code checks the transmission of different kinds of ions in the RFQ. The specific shunt impedance of RFQ is optimized to 438kΩ.m. The design of cavity tuning and the water cooling system are also included in this paper.
Corresponding authors:,