Author: Yang, L.
Paper Title Page
MOPPR094 Preparation for NSLS II Linac to Booster Transport Line Commissioning 1002
 
  • G.M. Wang, M.A. Davidsaver, R.P. Fliller, G. Ganetis, H.-C. Hseuh, Y. Hu, D. Padrazo, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, H. Xu, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The first part of the Linac to Booster Transport (LBT) line has been installed for the linac commissioning. This part will be used for the linac acceptance test. In this paper, we describe the preparation of the LBT sub-system integration test and the high level applications.  
 
THPPR018 Development Progress of NSLS-II Accelerator Physics High Level Applications 4005
 
  • L. Yang, J. Choi, Y. Hidaka, G. Shen, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the Department of Energy.
The High Level Applications (HLA) for NSLS-II commissioning is a development in progress. It is in a client-server framework and uses Python programming language for scripting and graphical user interface application development. This new development provides both scripting and graphical user interface (GUI) controls. The services developed in controls group provide name server, archiving, machine snapshot etc. The clients are developed mainly in the physics group and have measurement, analysis and modeling capabilities.
 
 
THPPC056 Development of 12kW RF Power Supply for CYCHU-10 Cyclotron 3416
 
  • D. Li, T. Hu, J. Huang, K.F. Liu, B. Qin, J. Yang, L. Yang
    Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
 
  One 12kW RF power supply has been developed for CYCHU-10, which is a 10 MeV cyclotron developed in Huazhong University of Science and Technology (HUST). A high performance DDS chip AD9859 is used to synthesize RF signal in this power supply, which is easy to change the output frequency. The centre frequency is 101MHz, and the frequency bandwidth is more than 1MHz. The RF power supply could operate in fine searching mode, coarse searching mode, tracking mode, and so on. It could search the resonant frequency of cavity with the frequency control loop. The final stage amplifier using a triode 3CW20,000H7 operates in grounded grid configuration, which is stable and reliable. The performance test using a 50Ω resistor load has finished, and major results are shown in this paper.  
 
THPPD053 Study on Eddy Current Power Losses in Insulated Core Transformer Primary Coil 3632
 
  • L. Yang, X. Liu, Y.Q. Xiong, J. Yang
    Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
  • T. Yu
    HUST, Wuhan, People's Republic of China
 
  Insulated core transformer (ICT) high-voltage DC power supply is widely used in electron beam accelerator. With air gap in ICT, the reluctance of magnetic circuit is larger than other transformers, and the transverse magnetic flux leakage around the primary coil is more serious. Because the magnetic flux on the radial direction of coil cannot be ignored, the eddy current loss on the wire should be discussed. In this paper, simulation and analysis of the eddy current loss is presented. The relationship between the sizes of the coil wire is also discussed. An optimal design of the primary coil is shown.