
DEVELOPMENT PROGRESS OF NSLS-II ACCELERATOR PHYSICS
HIGH LEVEL APPLICATIONS∗

Lingyun Yang† , Jinhyuk Choi, Yoshiteru Hidaka, Guobao Shen, Guimei Wang
Photon Sciences Directorate, BNL, Upton, NY 11973, USA

Abstract
The High Level Applications (HLA) for NSLS-II com-

missioning is a development in progress. It is in a
client-server framework and uses Python programming
language [1] for scripting and graphical user interface ap-
plication development. This new development provides
both scripting and graphical user interface (GUI) controls.
The services developed in controls group provide name
server, archiving, machine snapshot, etc. The clients are
developed mainly in the physics group and have measure-
ment, analysis and modeling capabilities.

INTRODUCTION
NSLS-II (National Synchrotron Light Source II) is a

state-of-the-art third-generation light source under con-
struction at BNL (Brookhaven National Laboratory) [2].
The commissioning of LINAC has started and the storage
ring commissioning is expected in about one year.

The development of high level applications (HLA) for
commissioning and accelerator physics study is a joint ef-
fort from both controls and accelerator physics group. It
fits the client-server framework naturally where the con-
trols group provides services and hides the low level details
of equipment controls. The higher-level controls which are
either scripts or applications with graphical user interfaces
can talk to the services with defined application program-
ming interfaces (APIs). For better maintenance and flexi-
bility, the APIs and the dependency between services are
reduced on purpose. As a backup, some of the services
have local native library as a replacement in HLA, but in
this case these replacements are not available for users out-
side of Python HLA.

SERVICES
The services developed in controls group are meant to

support a wider collaboration between accelerator facili-
ties. Most of them have no physics logic inside and can be
plug-and-play according to their clients. These services are
either based on EPICS V4 or will be ported.

Element Controls and Channel Finder Service
The lowest level of control in HLA is to read/write a

single property of magnet or diagnostics equipment. In
EPICS terminology it is equivalent to read/write a chan-
nel or process variable (PV). For a facility like NSLS-II
∗Work supported by Brookhaven Science Associates, LLC under Con-

tract No. DE-AC02-98CH10886 with the Department of Energy.
† lyyang@bnl.gov

storage ring, the HLA needs to access tens of thousands
of PVs. Using the PVs directly is not a pleasant way to
write our own script even with a naming conversion which
is well designed and followed. This may become more dif-
ficult as the machine evolves. For many high level controls,
we need not only the setpoint/readback value of a piece of
equipment but also its metadata like the location and type
of equipment. Thus, use of one PV or a set of PVs is not
sufficient for high level controls.

Table 1: CFS Record Example: Properties
elemName=FYM1G4C02A element name

devName=FM1G4C02A device name
elemType=VFCOR element type

cell, girder=C02, G4 cell name
symmetry=A symmetry
elemField=y element field

handle=READBACK read/write
sEnd,length=65.5222,0.044 physics location, length

ordinal=264 index in lattice file

HLA uses a directory service called channel finder ser-
vice (CFS) [3] to manage these auxiliary pieces of infor-
mation. The channel (PV) name is the key of a record.
Each record can have properties and tags. Properties are
keyword-value pair data, whereas tags are plain strings. As
an example, Table 1 and 2 show the properties and tags,
respectively, of a record whose key is the channel name
SR:C02-MG:G04BHCor:M1Fld-I. This PV corresponds to
the readback value of a horizontal corrector in girder 4 and
cell 2. Note that certain naming conventions should be es-
tablished to avoid tag name collision if multiple users are
allowed to tag each record.

Different from the properties’ keyword-value pair data
format, tags are only a string. Table 2 shows the tags of the
same record as Table 1. Certain conventions can be applied
for different users.

With CFS, HLA can construct one or more accelerator
lattices. Each lattice has enough information to access set-
points and read-backs, and to find neighboring elements.
Python language has good standard libraries for all these
operations.

Machine Snapshot
The Machine Snapshot and Retrieve service (MASAR)

is another example of services developed in our controls
group. The architecture of MASAR is shown in Fig. 1. It
adopts EPICS-V4 as a middle service layer and uses chan-

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR018

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

4005 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Table 2: CFS Record Example: Tags
tag description
aphla.eget a default read PV for this element
aphla.eput a default write PV for this element
aphla.x horizontal (kicker in this case)
aphla.y vertical (kicker in this case)
aphla.sys.SR storage ring system
aphla.sys.LTB linac to booster system
aphla.sys.LTD1 linac to dump 1
aphla.sys.LTD2 linac to dump 2

Figure 1: Architecture of MASAR.

nel RPC as the communication protocol. MASAR saves
a predefined set of channels and compares the current ma-
chine data with previously saved data. A configuration de-
fines the set of channels to be saved. The channels can be of
any available record data types such as scalar values, arrays
and strings. The configurations have a relational database
back-end (e.g. SQLite3) and could be connected to the
global IRMIS system. A prototype GUI application for
this service has been implemented using PyQt4 with more
features to be added in the future. The Python APIs for
MASAR service provide thin interface but meet all HLA
requirements.

Online Model and Unit Conversion
We have been testing our HLA applications against a

Tracy-II based virtual accelerator. When the real machine
is online, this virtual accelerator can still serve as an online
calculator. It will be useful to construct a lattice simulation
based on current machine readings and the HLA provides
the capability to do this online or semi-online.

Both the online and offline calculation need to convert
the magnet strength from machine units to physics units.
This will be available to not only the Python HLA but
potentially to other customers. A unit conversion service
whose architecture is shown in Fig. 2 would access the
magnet measurement data in the central database and pro-
vide the conversion between different units. This service
has been planned and a Python API set will be developed.

We have also finished the design of TWISS service for
the online calculation of beam/machine properties.

Figure 2: Architecture of UNICON.

CLIENTS
The client side consists of python scripts, notebooks

and GUI applications. The core HLA library is designed
to minimize the memorization of lattice structure by in-
cluding powerful search capability. All operations are in
search-verify-operate mode. Searching will find the ele-
ments matching certain patterns. A pattern could be a mag-
net type, a cell number, or girder number or Unix filename
wildcard pattern. A code example is shown in Fig. 3. Ver-
ification is necessary if the operations to be followed are
critical. For example if an algorithm requires exactly 4
BPMs, then a verification on the length of a returned el-
ement list is needed. This is easy in Python HLA. In HLA,
a typical operation is performed on the ”field” of elements.
The fields have familiar names like ”k1” for the strength
of a quadrupole and ”f” for the frequency of an RF cavity.
The values of these fields are in physics units, and thus can
be directly used in lattice modeling.

Figure 3: Code example of HLA.

Launcher
The launcher is similar to a file browser like Windows

Explorer, the launcher organizes the available scripts and
applications for HLA in a tree structure (see Fig . 4).

A standard list of available applications comes with the
HLA Python installation package. Although this standard

Searching and smart matching is possible with PyQt4
support.

THPPR018 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

4006C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

Figure 4: Launcher of HLA.

list is read-only for end users, users can add a custom list of
applications to the launcher for a quick access to frequently
used applications. This custom list is stored in their $HOME
directory as part of the HLA configuration file, like stan-
dard Linux applications.

Orbit and Beam Based Alignment

Figure 5: Orbit display and control.

The Orbit display shown in Fig. 5 integrates orbit con-
trol and magnet control functions. By zooming in/out and
clicking the proper hot-zone a tuning control will be avail-
able to read and write the element properties. These proper-
ties are defined in CFS with familiar names as in the lattice
design.

The beam based alignment (BBA) application follows
the ALS algorithm [4]. The analyzed data including the
pictures are stored as the HDF5 format. The file format is
accessible to many programing languages and applications,
e.g. Mathematica, Matlab, C/C++ and FORTRAN (see

Figure 6: Beam based alignment.

Fig. 6).

General Purpose Plotting
We are developing a general-purpose plotting applica-

tion for data acquisition and analysis. Data from differ-
ent sources such as the archiver data base and the actual
machine can be visualized as a time-series plot, as well as
against each other in a 2-D plot. A Python shell environ-
ment will be also embedded in the application. This allows
not only raw data but also data derived from raw data to be
plotted.

PyTracy and PyLOCO
Python binding of Tracy-II code has been developed for

online and offline simulations. Following the Matlab ver-
sion of LOCO [5], we are also developing a Python version
for linear optics modeling.

ACKNOWLEDGMENT
We thank Kunal Shroff, Gabriele Carcassi, Ralph Lange

for CFS, Don Dohan for IRMIS. The whole open source
community for providing great tools.

REFERENCES
[1] Python Programming Language, http://www.python.org/

[2] NSLS-II preliminary design report,
http://www.bnl.gov/nsls2/project/PDR/

[3] Directory Service for EPICS Channels,
http://channelfinder.sourceforge.net/

[4] G. Portmann, D. Robin, and L. Schachinger, “Automated
beam based alignment of the ALS quadrupoles,” in PAC95.

[5] J. Safranek, “Experimental Determination of Storage Ring
Optics Using Orbit Response Measurements,” Nuclear In-
struments and Methods A 388 (1997).

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR018

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

4007 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

