Author: Xiao, M.
Paper Title Page
TUPPR085 Recycler Chromaticities and End Shims for NOvA at Fermilab 2023
 
  • M. Xiao
    Fermilab, Batavia, USA
 
  In era of NOvA operation, it is planned to slip-stack six on six Booster proton batches in the Recycler ring for a total intensity of 5×1013 protons/cycle. During the slip-stacking, the chromaticities are required to be jumped from (-2,-2) to (-20,-20). However, they can only be adjusted to (-12,-12) from (-2,-2) using existing 2 families of powered sextupoles. On the other hand, the presently designed Recycler lattice for Nova replaces the 30 straight section with 8 “D-D half FODO cells”. We use 3 quads in a half-cell to obtain the working point under the limit of the feasible quad strength, and the maximum beta-function in this section cannot be less than 80 m. In this paper, we re-designed the end shims of the permanent magnets in the ring lattice with appropriate quadrupole and sextupole components to meet both chromaticity and tune requirements. We are able to use 2 quads in a half cell in RR30 straight section within feasible quad strength. The maximum beta-functions are also lowered to around 55 m. The dynamic aperture tracking has been done using MAD to simulate the scenario of beam injection into the Recycler ring for Nova.  
 
TUPPR086 Transport from the Recycler Ring to the Antiproton Source Beamlines 2026
 
  • M. Xiao
    Fermilab, Batavia, USA
 
  In the post-Nova era, the protons are directly transported from the Booster ring to the Recycler ring rather than the Main Injector. For Mu2e and g-2 project, the Debuncher ring will be modified into a Delivery ring to deliver the protons to both Mu2e and g-2 experiemnts. Therefore, It requires the transport of protons from the Recycler Ring to the Delivery ring. A new transfer line from the Recycler ring to the P1 beamline will be constructed to transport proton beam from the Recycler Ring to existing Antiproton Source beamlines. This new beamline provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. This paper presents the Conceptual Design of this new beamline.