Author: Watanabe, T.
Paper Title Page
MOPPD029 Recent Achievements and Upgrade Programs at RIKEN Radioactive Isotope Beam Factory 430
 
  • H. Okuno, T. Dantsuka, M. Fujimaki, T. Fujinawa, N. Fukunishi, H. Hasebe, Y. Higurashi, K. Ikegami, E. Ikezawa, H. Imao, T. Kageyama, O. Kamigaito, M. Kase, M. Kidera, M. Komiyama, H. Kuboki, K. Kumagai, T. Maie, M. Nagase, T. Nakagawa, M. Nakamura, J. Ohnishi, N. Sakamoto, K. Suda, H. Watanabe, T. Watanabe, Y. Watanabe, K. Yamada, H. Yamasawa
    RIKEN Nishina Center, Wako, Japan
 
  Recent achievements and upgrade programs in the near future at RIKEN Radioactive Isotope Beam Factory (RIBF) are presented. The beam intensity and available ion species are increasing at RIBF, owing to the continuous efforts that have been paid since the first beam in 2006. So far, we accelerated deuteron, helium, nitrogen, oxygen, aluminum, calcium, krypton, and uranium beams with the world's first superconducting ring cyclotron, SRC*. The extracted beam intensities reached 1,000 pnA for helium and oxygen beams. From the operational point of view, however, the intensity of the uranium beam should be much increased. Therefore we constructed a new injector system for the RIBF, consisting of a 28 GHz ECR ion sources, RFQ and DTL, which was successfully commissioned in the end of 2010. Furthermore we developed low-Z (low atomic number Z) gas stripper** alternative to standard carbon foil stripping, which will be reliable and efficient charge stripping scheme for such high-power uranium beams.
* H. Okuno et al., IEEE Trans. Appl. Supercond., 18, 226 (2008).
** H. Okuno et al., Phys. Rev. ST Accel. Beams 14, 033503 (2011).
 
 
MOPPD030 Present Status of RIKEN Ring Cyclotron 433
 
  • Y. Watanabe, M. Fujimaki, N. Fukunishi, H. Hasebe, Y. Higurashi, E. Ikezawa, H. Imao, T. Kageyama, O. Kamigaito, M. Kase, M. Kidera, M. Komiyama, H. Kuboki, K. Kumagai, T. Maie, M. Nagase, T. Nakagawa, J. Ohnishi, H. Okuno, N. Sakamoto, K. Suda, H. Watanabe, T. Watanabe, K. Yamada, S. Yokouchi
    RIKEN Nishina Center, Wako, Japan
  • T. Aihara, S. Fukuzawa, M. Hamanaka, S. Ishikawa, K. Kobayashi, Y. Kotaka, R. Koyama, T. Nakamura, M. Nishida, M. Nishimura, T.O. Ohki, K. Oyamada, J. Shibata, M. Tamura, N. Tsukiori, A. Uchiyama, K. Yadomi, H. Yamauchi
    SHI Accelerator Service Ltd., Tokyo, Japan
 
  The RIKEN Ring Cyclotron (RRC K540) has been in stable operation over twenty-five years, and supplying many kinds of heavy-ion beams to experiments. Since 2007, it has also been supplying beams to the RIBF four Ring cyclotrons including the Super-conducting Ring Cyclotron (SRC K2500). Now the RRC has three kinds of injectors, one is K70 AVF cyclotron for light ions, the second is the variable-frequency linac for heavy ions, and the third is the RILAC2 for using the high intensity very heavy ions like U and Xe. The many combinations of accelerators are possible, and in any acceleration modes, the RRC should works as a first energy booster. A total operation time of the RRC is more than 5000 hr in every year. The present status of the RRC operation will be reported.  
 
TUOBA02 Beam Commissioning and Operation of New Linac Injector for RIKEN RI-beam Factory 1071
 
  • K. Yamada, S. Arai, M. Fujimaki, T. Fujinawa, H. Fujisawa, N. Fukunishi, Y. Higurashi, E. Ikezawa, H. Imao, O. Kamigaito, M. Kase, M. Komiyama, K. Kumagai, T. Maie, T. Nakagawa, J. Ohnishi, H. Okuno, N. Sakamoto, K. Suda, H. Watanabe, T. Watanabe, Y. Watanabe, H. Yamasawa
    RIKEN Nishina Center, Wako, Japan
  • A. Goto
    NIRS, Chiba-shi, Japan
  • Y. Sato
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A new linac injector called RILAC2* has successfully commissioned at the RIKEN RI beam factory (RIBF). The RILAC2 can accelerate very heavy ions with m/q of 7, such as 124Xe19+ and 238U35+ from a 28 GHz superconducting ECR ion source**, up to an energy of 680 keV/nucleon in the cw mode. Ions are directory injected into the RIKEN Ring Cyclotron without charge stripping in order to increase the beam intensity, as well as performing independent RIBF experiments and super-heavy-element synthesis. The key features of RILAC2 are the powerful ECRIS, higher extraction voltage of the ECRIS compared to the voltage of the existing injector linac to reduce the space charge effect, improvement of the rf voltage and phase stability, improvement of the vacuum level to reduce the loss by charge exchange, and the compact equipments yet to be installed in the existing AVF cyclotron vault. The first beam acceleration was achieved on December 21, 2010. After the several beam acceleration tests in 2011, we started to operate the RILAC2 to supply beams for the RIBF experiments.
* O. Kamigaito et al., Proc. of PASJ3-LAM31, WP78, p. 502 (2006); K. Yamada et al., Proc. of IPAC'10, MOPD046, p.789 (2010).
** T. Nakagawa et al., Rev. Sci. Instrum. 79, 02A327 (2008).
 
slides icon Slides TUOBA02 [9.947 MB]  
 
THPPP084 Charge Stripping of Uranium-238 Ion Beam with Helium Gas Stripper 3930
 
  • H. Imao
    RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
  • N. Fukunishi, H. Hasebe, O. Kamigaito, M. Kase, H. Kuboki, H. Okuno, T. Watanabe, Y. Watanabe, Y. Yano, S. Yokouchi
    RIKEN Nishina Center, Wako, Japan
 
  Development of the reliable and efficient electric charge stripping method is one of the key issues in next-generation high-intensity heavy ion accelerators. Although conventional carbon-foil charge strippers provide a good charge stripping efficiency, two serious problems are emerging; the short usable time and thickness non-uniformity. A charge stripper using low-Z gas is an important candidate applicable for high-intensity 238U beams to replace carbon foil strippers. In the present work, the first actual charge stripping system using helium gas for 238U beams injected at 10.75 MeV/u has been developed and tested.