Author: Walstrom, P.L.
Paper Title Page
TUPPC050 Beam Transport and Storage with Cold Neutral Atoms and Molecules 1281
 
  • P.L. Walstrom, M.D. Di Rosa
    LANL, Los Alamos, New Mexico, USA
 
  Funding: US Department of Energy
Paramagnetic neutral atoms and molecules are subject to magnetic-field-gradient forces on their magnetic moments. Li atoms and CaH molecules both have an effective magnetic moment of about one Bohr magneton, and in the presence of a strong (~1 T) magnetic field, acquire a Zeeman energy of one of two values, ±μ|B|. Particles with positive (negative) energy are repelled by (attracted toward) increasing fields. Li and CaH can be laser-cooled to speeds of tens of m/s and the corresponding magnetic fields needed for transport and injection are on the order of 1 T. The stable stored state is the field-repelled state. Many concepts of accelerator physics apply to our neutral particles. The analog of charge-exchange injection into storage rings is laser-based optical pumping from a field-seeking state to a field-repelled state. The role of dipoles in charged-particle optics is played by quadrupoles in neutral particle optics, and the role of quadrupoles by sextupoles. We present our design and tracking results for a neutral atom/molecule accumulator including an injection chicane with a laser-stimulated state-flip.
 
 
THPPR067 A Conceptual 3-GeV LANSCE Linac Upgrade for Enhanced Proton Radiography 4130
 
  • R.W. Garnett, F.E. Merrill, J.F. O'Hara, D. Rees, L. Rybarcyk, T. Tajima, P.L. Walstrom
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at LANSCE is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac at Los Alamos National Laboratory currently provides H and H+ beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.