Author: Volkov, V.
Paper Title Page
TUPPD062 The Source of Emittance Dilution and photoemission tunneling effect in Photocathode RF Guns 1542
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH-NG-636 and HRJRG-214.
Experimental data on HoBiCaT SRF photoinjector give an emittance which is much larger than the predicted thermal emittance. Modeling of photocathode RF gun beams with the different imperfections of experimental setup (alignment errors, inhomogeneity of quantum efficiency and laser power distributions on the cathode) is given. The main reason for the beam emittance dilution is photocathode field imperfections induced by field emitters that change the local electric field. Some field models of such photocathodes are tested in the simulations. The dependence of photocathode beam currents on the surface electric field was measured with the HoBiCaT SRF Photoinjector. The dependence can be explained by the tunneling effect described by Fowler-Nordheim like equation and is difficult to explain by usually applying Schottky effect.
 
 
TUPPD063 Interpretation of Dark Current Experimental Results in HZB SC RF Gun 1545
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko, A. Neumann
    HZB, Berlin, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH-NG-636 and HRJRG-214.
The experimental dark current measurement results are obtained on HZB SC RF gun. The field emitters are considered to be random defects on the back wall of the cavity. Conducting wires with 1 micron length, blobs of 200 micron diameter and ”tip on tip” combination of them are taken as dark current emitters in the cavity. RF fields were calculated with CLANS program. The dynamic simulation of dark currents from these emitters fit experimental data. The emitter heating power by RF induced current is four orders of magnitude larger than by the field emitted dark current. The RF induced emitter temperature is proportional to ω1/2 which explains the accelerating gradient limit of a cavity like Kilpatrik law. The RF processing by high order modes seems to be promising.
 
 
TUPPD064 Cathode Insert Design for SC RF Guns 1548
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko
    HZB, Berlin, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Assiciation VH-NG-636 and HRJRG-214.
The cathode inserts in superconducting (SC) RF guns are normal conducting devices attached to a SC RF gun cavity. They enable the photocathode replacement and, at the same time, preserve high quality factor and high fields in the RF guns. However, the insert may also limit the gun performance because of multipacting etc. The experience gathered in early designs at Wuppertal [1], and, more recently at BNL [2] and HZDR [3] is taken into account. We consider the design structure of the cathode insert worked out by BINP for 1 cell prototype of SC HZDR RF gun [4]. The detailed electric, mechanic, and thermal calculations of the initial [4] and the upgraded design are presented in this paper.
* A. Michalke et al., EPAC'92, p. 1014 (1992).
** A. Burrill et al., PAC07, p. 2544 (2007).
*** D. Janssen et al., NIM A507, 314 (2003).
**** D. Janssen et al., NIM A445, 408 (2000).
 
 
TUPPD051 Operational Experience with the Nb/Pb SRF Photoelectron Gun 1518
 
  • T. Kamps, W. Anders, R. Barday, A. Jankowiak, J. Knobloch, O. Kugeler, A.N. Matveenko, A. Neumann, T. Quast, J. Rudolph, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • R. Nietubyć
    The Andrzej Soltan Institute for Nuclear Studies, Centre Świerk, Świerk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • J. Smedley
    BNL, Upton, Long Island, New York, USA
  • J. Teichert
    HZDR, Dresden, Germany
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • I. Will
    MBI, Berlin, Germany
 
  SRF photoelectron guns offer the promise of high brightness, high average current beam production for the next generation of accelerator driven light sources such as free electron lasers, THz radiation sources or energy-recovery linac driven synchrotron radiation sources. In a first step a fully superconducting RF (SRF) photoelectron gun is under development by a collaboration between HZB, DESY, JLAB, BNL and NCBJ. The aim of the experiment is to understand and improve the performance of a Nb SRF gun cavity coated with a small metallic Pb cathode film on the cavity backplane. This paper describes the highlights from the commissioning and beam parameter measurements. The main focus is on lessons learned from operation of the SRF gun.