Author: Variola, A.
Paper Title Page
TUPPR012 Polarized Positron Source with a Compton Multiple Interaction Point Line 1834
 
  • I. Chaikovska, O. Dadoun, P. Lepercq, A. Variola
    LAL, Orsay, France
  • R. Chehab
    IN2P3 IPNL, Villeurbanne, France
 
  Positron sources are critical components of the future lepton colliders projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine by increasing the precision of the measurements and enhancing certain types of interactions. In this framework, the Compton sources for polarized positron production are taken into account where the high energy gamma rays are produced by the Compton scattering and subsequently converted in the polarized electron-positron pairs in a target. The Compton multiple IP line is proposed as one of the solutions to increase the number of captured positrons. This allows a significant increase in the emitted gamma ray flux impinging on the target. The gamma ray production with the Compton multiple IPs line is simulated and used for polarized positron generation. Later, a capture section based on an adiabatic matching device followed by a pre-injector linac is simulated to capture and accelerate the positron beam. The results obtained are presented and discussed.  
 
MOPPP033 Diagnostics at PITZ 2.0 Beamline: Status and New Developments 634
 
  • M. Otevřel, A. Donat, H.-J. Grabosch, M. Groß, L. Hakobyan, H.M. Henschel, L. Jachmann, M. Khojoyan, G. Klemz, W. Köhler, G. Koss, G. Kourkafas, M. Krasilnikov, K. Kusoljariyakul, H. Leich, J. Li, M. Mahgoub, D. Malyutin, B. Marchetti, J. Meissner, A. Oppelt, M. Penno, B. Petrosyan, M. Pohl, S. Riemann, M. Sachwitz, B. Schöneich, J. Schultze, A. Shapovalov, F. Stephan, F. Tonisch, G. Vashchenko, L.V. Vu, T. Walter, S. Weisse, R.W. Wenndorff, M. Winde
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • N.I. Brusova, L.V. Kravchuk, V.V. Paramonov
    RAS/INR, Moscow, Russia
  • A. Gonnin, M. Joré, B. Mercier, C. Prevost, A. Variola
    LAL, Orsay, France
  • I.I. Isaev
    MEPhI, Moscow, Russia
  • Ye. Ivanisenko
    IERT, Kharkov, Ukraine
  • D. Richter
    HZB, Berlin, Germany
  • S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • A.A. Zavadtsev, D.A. Zavadtsev
    Nano, Moscow, Russia
 
  The main aim of the Photo Injector Test Facility at DESY, Zeuthen (PITZ) site is to develop and test an FEL photo injector system capable of producing high charge short electron bunches of lowest possible transverse emittance to allow optimum FEL performance. The last major beamline upgrade realized in the second half of the year 2011 completed the evolution of the PITZ setup ongoing since 2005. The most recent upgrades include the installation of a new RF deflecting cavity - a prerequisite for longitudinal emittance and high resolution slice emittance measurements and installation of a new dispersive section for longitudinal phase space diagnostics of the high energy electron bunches. The paper will give an overview on electron beam diagnostics at PITZ, including the above mentioned upgrades.  
 
TUOBB01 A European Proposal for the Compton Gamma-ray Source of ELI-NP 1086
 
  • L. Serafini, I. Boscolo, F. Broggi, V. Petrillo
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • O. Adriani, G. Graziani, G. Passaleva
    INFN-FI, Sesto Fiorentino, Italy
  • S. Albergo, A. Tricomi
    INFN-CT, Catania, Italy
  • D. Alesini, M.P. Anania, A. Bacci, R. Bedogni, M. Bellaveglia, C. Biscari, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, E. Di Pasquale, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, F. Marcellini, C. Maroli, G. Mazzitelli, E. Pace, L. Pellegrino, R. Ricci, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, P. Tomassini, C. Vaccarezza, S. Vescovi, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • D. Angal-Kalinin, J.A. Clarke, B.D. Fell, A.R. Goulden, J.D. Herbert, S.P. Jamison, P.A. McIntosh, R.J. Smith, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Antici, M. Coppola, L. Lancia, A. Mostacci, L. Palumbo
    URLS, Rome, Italy
  • N. Bliss, B.G. Martlew
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Cardarelli, M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma, Italy
  • I. Chaikovska, O. Dadoun, A. Stocchi, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • C. De Martinis
    INFN/LASA, Segrate (MI), Italy
  • F. Druon, P. Fichot
    ILE, Palaiseau Cedex, France
  • E. Iarocci
    University of Rome "La Sapienza", Rome, Italy
  • M. Migliorati
    Rome University La Sapienza, Roma, Italy
  • A.-S. Müller
    IN2P3, Paris, France
  • V. Nardone
    Università di Roma I La Sapienza, Roma, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M. Veltri
    Uniurb, Urbino (PU), Italy
 
  A European proposal is under preparation for the Compton gamma-ray Source of ELI-NP. In the Romanian pillar of ELI (the European Extreme Light Infrastructure) an advanced gamma-ray beam is foreseen, coupled to two 10 PW laser systems. The photons will be generated by Compton back-scattering in the collision between a high quality electron beam and a high power laser. A European collaboration formed by INFN, Univ. of Roma La Sapienza, Orsay-LAL of IN2P3, Univ. de Paris Sud XI and ASTeC at Daresbury, is preparing a TDR exploring the feasibility of a machine expected to achieve the Gamma-ray beam specifications: energy tunable between 1 and 20 MeV, narrow bandwidth (0.3%) and high spectral density, 104 photons/sec/eV. We will describe the lay-out of the 720 MeV RF Linac and the collision laser with the associated optical cavity, as well as the optimized beam dynamics to achieve maximum phase space density at the collision, taking into account beam loading and beam break-up due to the acceleration of long bunch trains. The predicted gamma-ray spectra will be evaluated as the gamma photons collimators background. An option for electron bunches recirculation will also be illustrated.  
slides icon Slides TUOBB01 [5.099 MB]  
 
TUPPR088 Baseline Design of the SuperB Factory Injection System 2032
 
  • S. Guiducci, A. Bacci, M.E. Biagini, R. Boni, M. Boscolo, D. Pellegrini, M.A. Preger, P. Raimondi, A.R. Rossi, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Baylac
    LPSC, Grenoble, France
  • J. Brossard, S. Cavalier, O. Dadoun, T. Demma, P. Lepercq, E. Ngo Mandag, C. Rimbault, A. Variola
    LAL, Orsay, France
  • J.T. Seeman
    SLAC, Menlo Park, California, USA
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  The injection complex of the SuperB, B-factory project of INFN consists of a polarized electron gun, a positron production system, electron and positron linac sections, a positron damping ring and the transfer lines connecting these systems and the collider main rings. To keep the ultra high luminosity nearly constant, continuous injection of 4 GeV electrons and 7 GeV positrons in both Low Energy Ring (LER) and High Energy Ring (HER) is necessary. In this paper we describe the baseline design and the beam dynamics studies performed to evaluate the system performance.  
 
WEPPR076 Positron Options for the Linac-ring LHeC 3108
 
  • F. Zimmermann, O.S. Brüning, Y. Papaphilippou, D. Schulte, P. Sievers
    CERN, Geneva, Switzerland
  • H.-H. Braun
    Paul Scherrer Institut, Villigen, Switzerland
  • E.V. Bulyak
    NSC/KIPT, Kharkov, Ukraine
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  The full physics program of a future Large Hadron electron Collider (LHeC) requires both pe+ and pe- collisions. For a pulsed 140-GeV or an ERL-based 60-GeV Linac-Ring LHeC this implies a challenging rate of, respectively, about 1.8·1015 or 4.4·1016 e+/s at the collision point, which is about 300 or 7000 times the past SLC rate. We consider providing this e+ rate through a combination of measures: (1) Reducing the required production rate from the e+ target through colliding e+ (and the LHC protons) several times before deceleration, by reusing the e+ over several acceleration/deceleration cycles, and by cooling them, e.g., with a compact tri-ring scheme or a conventional damping ring in the SPS tunnel. (2) Using an advanced target, e.g., W-granules, rotating wheel, sliced-rod converter, or liquid metal jet, for converting gamma rays to e+. (3) Selecting the most powerful of several proposed gamma sources, namely Compton ERL, Compton storage ring, coherent pair production in a strong laser, or high-field undulator radiation from the high-energy lepton beam. We describe the various concepts, present example parameters, estimate the electrical power required, and mention open questions.