

European Collaboration for the proposal of a Gamma-Beam System to the ELI-NP Project

A European Proposal for the Compton Gamma-ray Source of ELI-NP

C. Vaccarezza on behalf of the collaboration

Outline

- The European Collaboration
- The Source design
- The electron & laser beam parameters
- The Source layout
- The Photoinjector + Linac scheme
- S2e simulation results for the electron beam
- The laser system
- Future options to increase luminosity
- Conclusions

ELI-NP: F-I-UK Proposal

European Collaboration for the proposal of the gamma-ray source:

- ✓ Italy: INFN,Sapienza
- ✓ France: IN2P3, Univ. Paris Sud
- ✓ UK: ASTeC/STFC
- ~ 80 collaborators elaborating the CDR/TDR

Covering

- ✓ Underlying physics & Best machine layout
- Technical realization
- ✓ Infrastracture concern
- Management structure
- ✓ Costs & Timing and Schedulling
- Training and education
- Implementation

Gamma Beam Source

The Challenge we are facing: design the *most advanced* Gamma Beam System based on *state-of-the-art* components, to be commissioned and delivered to users *by the end of year 2016*, reliable, cost-effective, compatible with present lay-out of ELI-NP building and ready for future evolutions

Prototype of a New Generation (Light) Gamma-ray Sources: Bright, Mono-chromatic (0.3%), High Spectral Flux (> 10⁴ ph/sec/eV), Tunable (1-20 MeV), Highly Polarized, based on Compton Back-Scattering of High Phase Space Density Electron Beams by Lasers

- **Nuclear Resonance Fluorescence**
- **Nuclear Photo-fission**
- Isotope Detection -> toward Nuclear
- Photonics

Table 1: Summary of Gamma-ray beam Specifications

Photon energy	1-20 MeV
Spectral Density	> 10 ⁴ ph/sec.eV
Bandwidth (rms)	< 0.3%
# photons per shot within FWHM bdw.	2-6·10 ⁵
# photons/sec within FWHM bdw.	0.5-1.5.109
Source rms size	10 - 30 µm
Source rms divergence	25-250 µrad
Peak Brilliance (<i>N_{ph}/sec·mm²mrad^{2.0.1%}</i>)	$2.0.10^{22} - 1.1.10^{24}$
Radiation pulse length (rms, psec)	0.7-1.5
Linear Polarization	> 95 %
Macro rep. rate	100 Hz
# of pulses per macropulse	< 25
Pulse-to-pulse separation	> 15 nsec

Compton Scattering process

A simple model has been derived by L. Serafini, V. Petrillo predicts the number of photons scattered within the desidered bandwidth:

$$N_{\gamma}^{bw} = 1.2 \cdot 10^{9} \frac{U_{L}[J]Q[pC]f_{RF}n_{RF}}{hv[eV]\sigma_{x}^{2}[\mu m]} \Psi$$

scattered – ph/sec within $\Psi \equiv \gamma \vartheta$
$$\frac{\Delta v_{\gamma}}{v_{\gamma}} \approx \Psi^{2}$$

L. Serafini

IPAC 2012, May 21-25 2012, New Orleans

Weight The spectral density (Serafini-Petrillo)

Spectral density for the considered bandwidth $\frac{\Delta v_{\gamma}}{v_{\nu}}$:

$$SPD = 1.67 \cdot 10^8 U_L Q f_{RF} n_{RF} \frac{\sqrt{(\frac{\Delta v_{\gamma}}{v_{\gamma}})^2 - 4(\frac{\Delta \gamma}{\gamma})^2 - (\frac{\varepsilon_n}{\sigma_x})^4 - (\frac{\Delta v_L}{v_L})^2 - (\frac{M^2 \lambda_L}{2\pi w_0})^4 - (\frac{a_{0p}^2}{3})^2}{\gamma^2 \frac{\Delta v_{\gamma}}{v_{\gamma}} (4\sigma_x^2 + w_0^2) \sqrt{1 + \phi^2 (\frac{\sigma_z^2 + c^2 \sigma_t^2}{4\sigma_x^2 + w_0^2})}}$$

for ELI – NP must be
$$\frac{\Delta v_{\gamma}}{v_{\gamma}} = 0.003$$
 and SPD = 10^4

 $f_{RF} = 100 \ Hz \qquad U_L = \text{Laser pulse energy } (J) \ h \ V = \text{laser photon energy} = 2.4 \ eV$ $n_{RF} = \text{bunches per RF pulse} \quad Q = \text{el. bunch charge } (pC) \quad \phi = \text{collision angle}$ $\sigma_x = \text{e- beam focal rms spot size in } \mu m \qquad w_0 = \text{laser focal spot size in } \mu m \qquad _6$

Analytical model vs. Luclear Physics classical/quantum simulation

Electron & laser beams

Table 2: Electron beam parameters at Interaction Points: general characteris

all values are rms	
Energy (MeV)	200-720
Bunch charge (<i>pC</i>)	25-400
Bunch length (μm)	100-450
$\varepsilon_{n_x,y}$ (<i>mm-mrad</i>)	0.2-0.8
Bunch Energy spread (%)	0.04-0.08
Focal spot size (µm)	10-30
# bunches in the train	< 25
Bunch separation (nsec)	15-20
energy variation along the train	0.1 %
Energy jitter shot-to-shot	0.1 %
Emittance dilution due to beam breakup	< 10%
Time arrival jitter (<i>psec</i>)	< 0.5
Pointing jitter (µm)	1

Electron & laser beams

Table 2: Electron beam parameters at Interaction Points: general characteris

all values are rms	
Energy (MeV)	200-720
Bunch charge (<i>pC</i>)	25-400
Bunch length (μm)	100-450
$\varepsilon_{n_x,y}$ (<i>mm-mrad</i>)	0.2-0.8
Bunch Energy spread (%)	0.04-0.08
Focal spot size (µm)	10-30
# bunches in the train	< 25
Bunch separation (nsec)	15-20
energy variation along the train	0.1 %
Energy jitter shot-to-shot	0.1 %
Emittance dilution due to beam breakup	< 10%
Time arrival jitter (<i>psec</i>)	< 0.5
Pointing jitter (um)	Table 3: Laser beam parameter

11

Low Energy **High Energy** Interaction Interaction Pulse energy (*J*) 0.5 0.5 Wavelength (eV)2.4 2.4 FWHM pulse length (*ps*) 2-4 2-4 Repetition Rate (Hz) 100 100 M^2 < 1.2 < 1.2 Focal spot size w_0 (µm) 25-40 20-35 Bandwidth (rms) 0.05 % 0.05 % Pointing Stability (urad) 1 1 Sinchronization to an ext. clock $< 1 \, psec$ $< 1 \, psec$ Pulse energy stability 1% 1%

Baseline for the Linac

Nuclear Physics The hybrid scheme for the Linac

> Operation criteria:

 Long bunch at cathode for high phase space density :

$Q/\epsilon_n^2 > 10^3 pC/(\mu rad)^2$

 Short exit bunch (280 µm) for low energy spread (~0.05%)

> Advantages:

- Moderate risk (state of art RF gun, reduced multibunch operation problems respect to higher frequencies, low compression factor<3)
- Economic
- Compact (the use of the C-band
- booster meets the requirements on
- the available space)
- Possibility to use SPARC as test stand

Linac & TL

Low Energy

WP_{ref} from the photoinjector

Nuclear Physics

799

SB-Transverse beam size & distribution

Mudear Physics WPref_SB-energy spread & current

Transverse wake of a single cell from:

 $W = a e^{-t/\tau} \sin(\omega_{RF}\tau) V/C/m$

with: a = 245 V/p C/m, $\omega_{RF} = 2\pi \cdot 8.398 \times 10^9$ Wake res Q 11000 Wake res Q 100

IPAC 2012, May 21-25 2012, New Orleans

Wake on $\Delta x = 500 \ \mu m$

SB

Wake res Q 100

The laser systems

The laser systems

State of the art cryogenic amplifier around 100Hz

This is the solution we are following
Already 2 beams @ 50Hz & optical switch @100Hz fits the requirement
Pushing 50Hz→100Hz is feasible

F. Zomer

Nuclear Physics Laser request at the Compton IP

1ms (100Hz)

 Increase the number of interactions per pulse by recirculating N_{turns} times the beam in a ring

NO e- beam recirculation: Laser beam recirculations (N_{Ir}) = bunches in the train (N_b)

$$N_{turns} \ge 1 \Rightarrow N_{lr} > N_{b} * N_{turns}$$

Horizontal emittance degradation

- The E-Gammas-Source has been designed with his main features for feasibility, performance and cost effectiveness.
- Electron beam SB and MB beam dynamics studies have been performed and are close to be completed.
- The laser system and recirculator baseline has been defined the design finalization is on going.
- Tolerance studies have been started and their completion is on going.
- An electron recirculating ring is under study to improve luminosity.

Collimation system 1/2

Collimation system 2/2

Other type : dual slit collimator [W] used with 5 MeV linac X-ray beam

A solution was found with 4×2 collimators

- Collimation length greater
- Gamma yield smaller (~3 times less)

O. Dadoun