Author: Singh, O.
Paper Title Page
MOPPR094 Preparation for NSLS II Linac to Booster Transport Line Commissioning 1002
 
  • G.M. Wang, M.A. Davidsaver, R.P. Fliller, G. Ganetis, H.-C. Hseuh, Y. Hu, D. Padrazo, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, H. Xu, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The first part of the Linac to Booster Transport (LBT) line has been installed for the linac commissioning. This part will be used for the linac acceptance test. In this paper, we describe the preparation of the LBT sub-system integration test and the high level applications.  
 
MOPPP051 NSLS-II Transport Line Progress 676
 
  • R.P. Fliller, A.T. Anderson, B. Benish, W. DeBoer, G. Ganetis, R. Heese, H.-C. Hseuh, J. Hu, M.P. Johanson, B.N. Kosciuk, D. Padrazo, K. Roy, T.V. Shaftan, O. Singh, J.L. Tuozzolo, B. Wahl, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The first part of the Linac to Booster Transport (LBT) line has been installed for linac commissioning. This part includes all components necessary to commission the NSLS-II linac. The second part of this transport line is undergoing installation. Initial results of hardware commissioning will be discussed. The Booster to Storage Ring (BSR) transport line underwent a design review. The first part of the BSR transport line, consisting of all components necessary to commission the booster will be installed in 2012 for booster commissioning. We report on the final design of the BSR line along with the plan to commission the booster.