Author: Saa Hernandez, A.
Paper Title Page
TUPPC005 Optimization of the SIS100 Nonlinear Magnet Scheme for Slow Extraction 1158
  • A. Saa Hernandez, M.M. Kirk, D. Ondreka, N. Pyka, S. Sorge, P.J. Spiller
    GSI, Darmstadt, Germany
  The SIS100 superconducting synchrotron was initially planned mainly for fast extraction of protons and heavy ions. Due to the delay of the construction of the SIS300 synchrotron, SIS100 has to be able to provide slowly extracted heavy ion beams to the experiments. To improve the robustness of the slow extraction from SIS100, a lattice review was performed, resulting in an optimization of the nonlinear magnet scheme. In the original scheme the Hardt condition cannot be established due to a collapse of the dynamic aperture caused by the chromatic sextupoles. In the optimized scheme the positions of the chromatic sextupoles are modified and octupoles are employed to compensate the second order effects of these sextupoles. In addition, the number of resonance sextupole magnets is reduced. With the new scheme, the Hardt condition can be established, leading to higher extraction efficiency. The separatrix can be freely adjusted, and closed orbit control is improved.  
TUPPC034 Preparation of SLS for IBS Measurements 1233
  • N. Milas, M. Böge, A. Streun
    PSI, Villigen, Switzerland
  • M. Aiba, A. Lüdeke, A. Saa Hernandez
    Paul Scherrer Institut, Villigen, Switzerland
  • F. Antoniou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  It is planned to use the SLS for testing damping ring issues related to linear colliders. One aspect is the study of Intra-Beam Scattering (IBS) effects, which are a limiting factor for ultra-low emittance rings. In this paper we present the setup and characterization of a new mode of operation in which the SLS runs at lower energy (1.57 GeV) with a natural emittance of 2.4 nm rad. This is much smaller than that at the nominal energy (2.41 GeV) and should make IBS effects more easily visible. In order to be able to observe IBS a careful setup is required: Optics measurement and correction as well as measurements of the bunch natural energy spread and the onset of turbulent bunch lengthening. Also, a detailed discussion on the available diagnostics and their limitations are shown and finally some preliminary results of beam emittance measurements, in all three planes, as a function of single bunch current are presented.