Author: Prior, C.R.
Paper Title Page
MOPPC030 Status of the Decay Ring Design for the IDS Neutrino Factory 199
 
  • D.J. Kelliher, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • N. Bliss, N.A. Collomb
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  In the International Design Study for the Neutrino Factory (IDS-NF) a racetrack design has been adopted for the decay ring*. The injection system into the decay ring is described. The feasibility of injecting both positive and negative muons into the ring is explored from the point of view of injection timing. Considerations for the design of a decay ring for a 10 GeV neutrino factory are included.
* ”International Design Study for the Neutrino Factory – interim design report”, RAL-TR-2011-018 (2011)
 
 
MOEPPB003 Status of the PRISM FFAG Design for the Next Generation Muon-to-Electron Conversion Experiment 79
 
  • J. Pasternak, A. Alekou, M. Aslaninejad, R. Chudzinski, L.J. Jenner, A. Kurup, Y. Shi, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, H.L. Owen
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • J.-B. Lagrange, Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • M. Lancaster
    UCL, London, United Kingdom
  • C. Ohmori
    KEK, Tokai, Ibaraki, Japan
  • T. Planche
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H. Witte
    BNL, Upton, Long Island, New York, USA
  • T. Yokoi
    JAI, Oxford, United Kingdom
 
  The PRISM Task Force continues to study high intensity and high quality muon beams needed for next generation lepton flavor violation experiments. In the PRISM case such beams have been proposed to be produced by sending a short proton pulse to a pion production target, capturing the pions and performing RF phase rotation on the resulting muon beam in an FFAG ring. This paper summarizes the current status of the PRISM design obtained by the Task Force. In particular various designs for the PRISM FFAG ring are discussed and their performance compared to the baseline one, the injection/extraction systems and matching to the solenoid channels upstream and downstream of the FFAG ring are presented. The feasibility of the construction of the PRISM system is discussed.  
 
MOPPD020 A Model for a High-Power Scaling FFAG Ring 409
 
  • G.H. Rees, D.J. Kelliher, S. Machida, C.R. Prior, S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  High-power FFAG rings are under study to serve as drivers for neutron spallation, muon production, and accelerator-driven reactor systems. In this paper, which follows on from earlier work*, a 20 - 70 MeV model for a high-power FFAG driver is described. This model would serve as a test bed to study topics such as space charge and injection in such rings. The design incorporates a long straight to facilitate H- charge exchange injection. The dynamic aperture is calculated in order to optimize the working point in tune space. The injection scheme is also described. A separate design for an ISIS injector, featuring a novel modification to the scaling law, was also studied.
*G.H. Rees and D.J. Kelliher, “New, high power, scaling, FFAG driver ring designs” HB2010, Morschach, September 2010, MOPD07, p. 54, http://www. JACoW.org
 
 
THPPP046 ESS End-to-End Simulations: a Comparison Between IMPACT and MADX 3841
 
  • E. Laface, R. Miyamoto
    ESS, Lund, Sweden
  • D.C. Plostinar, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The European Spallation Source will be a 5 MW superconducting proton linac for the production of spallation neutrons. It is composed of an ion source, a radio frequency quadrupole, a drift tube linac and a superconducting linac as well as the low, medium and high, energy beam transport sections. At present these components of the linac are in the design phase: the optimization of the accelerator parameters requires an intensive campaign of simulations to test the model of the machine under possible operational conditions. In this paper the results of simulations performed with the IMPACT and MADX-PTC codes are presented and a comparison is made between them and independent simulations using TraceWin. The dynamics of the beam envelope and single and multi-particle tracking are reported.  
 
THPPP052 Modelling the ISIS 70 MeV Linac 3859
 
  • D.C. Plostinar, C.R. Prior, G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • A.W. Mitchell
    University of Warwick, Coventry, United Kingdom
 
  The ISIS linac consists of four DTL tanks that accelerate a 50 pps, 20 mA H beam up to 70 MeV before injecting it into an 800 MeV synchrotron. Over the last decades, the linac has proved to be a stable and reliable injector for ISIS, which is a significant achievement considering that two of the tanks are nearly 60 years old. At the time the machine was designed, the limited computing power available and the absence of modern modeling codes, made the creation of a complex simulation model almost impossible. However, over the last few years, computer tools have became an integral part of any accelerator design, so in this paper we present a beam dynamics model of the ISIS linac. A comparison between the simulation results and machine operation data will be discussed, as well as possible linac tuning scenarios and recommended upgrades based on the new model.